Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(23): 6878-6882, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30449106

RESUMO

Theoretical calculations of vibrational properties are widely used to explain and predict experimental spectra. However, with standard quantum chemical methods all molecular motions are considered, which is rather time-consuming for large molecules. Because typically only a specific spectral region is of experimental interest, we propose here an efficient method that allows calculation of only a selected frequency interval. After a computationally cheap low-level estimate of the molecular motions, the computational time is proportional to the number of normal modes needed to describe this frequency range. Results for a medium-sized molecule show a reduction in computational time of up to 1 order of magnitude with negligible loss in accuracy. We also show that still larger computational savings are possible by using an additional intensity-selection procedure.

2.
J Phys Chem A ; 122(49): 9435-9445, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30452264

RESUMO

Vibrational circular dichroism (VCD) is a spectroscopic technique used to resolve the absolute configuration of chiral systems. Obtaining a theoretical VCD spectrum requires computing atomic polar and axial tensors on top of the computationally demanding construction of the force constant matrix. In this study we evaluated a VCD model in which all necessary quantities are obtained with density functional based tight binding (DFTB) theory. The analyzed DFTB parametrizations fail at providing accurate vibrational frequencies and electric dipole gradients but yield reasonable normal modes at a fraction of the computational cost of density functional theory (DFT). Thus, by applying DFTB in composite methods along with DFT, we show that it is possible to obtain accurate VCD spectra at a much lower computational demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA