Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632259

RESUMO

Nervous systems need to detect stimulus changes based on their neuronal responses without using any additional information on the number, times, and types of stimulus changes. Here, two relatively simple, biologically realistic change point detection methods are compared with two common analysis methods. The four methods are applied to intra- and extracellularly recorded responses of a single cricket interneuron (AN2) to acoustic simulation. Solely based on these recorded responses, the methods should detect an unknown number of different types of sound intensity in- and decreases shortly after their occurrences. For this task, the methods rely on calculating an adjusting interspike interval (ISI). Both simple methods try to separate responses to intensity in- or decreases from activity during constant stimulation. The Pure-ISI method performs this task based on the distribution of the ISI, while the ISI-Ratio method uses the ratio of actual and previous ISI. These methods are compared to the frequently used Moving-Average method, which calculates mean and standard deviation of the instantaneous spike rate in a moving interval. Additionally, a classification method provides the upper limit of the change point detection performance that can be expected for the cricket interneuron responses. The classification learns the statistical properties of the actual and previous ISI during stimulus changes and constant stimulation from a training data set. The main results are: (1) The Moving-Average method requires a stable activity in a long interval to estimate the previous activity, which was not always given in our data set. (2) The Pure-ISI method can reliably detect stimulus intensity increases when the neuron bursts, but it fails to identify intensity decreases. (3) The ISI-Ratio method detects stimulus in- and decreases well, if the spike train is not too noisy. (4) The classification method shows good performance for the detection of stimulus in- and decreases. But due to the statistical learning, this method tends to confuse responses to constant stimulation with responses triggered by a stimulus change. Our results suggest that stimulus change detection does not require computationally costly mechanisms. Simple nervous systems like the cricket's could effectively apply ISI-Ratios to solve this fundamental task.

2.
Hear Res ; 364: 81-89, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29631778

RESUMO

The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents.


Assuntos
Cóclea/inervação , Nervo Coclear/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição , Densidade Pós-Sináptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica , Estimulação Acústica , Animais , Feminino , Gerbillinae , Masculino , Neurônios Aferentes/metabolismo
3.
Front Syst Neurosci ; 10: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445714

RESUMO

In a natural environment, sensory systems are faced with ever-changing stimuli that can occur, disappear or change their properties at any time. For the animal to react adequately the sensory systems must be able to detect changes in external stimuli based on its neuronal responses. Since the nervous system has no prior knowledge of the stimulus timing, changes in stimulus need to be inferred from the changes in neuronal activity, in particular increase or decrease of the spike rate, its variability, and shifted response latencies. From a mathematical point of view, this problem can be rephrased as detecting changes of statistical properties in a time series. In neuroscience, the CUSUM (cumulative sum) method has been applied to recorded neuronal responses for detecting a single stimulus change. Here, we investigate the applicability of the CUSUM approach for detecting single as well as multiple stimulus changes that induce increases or decreases in neuronal activity. Like the nervous system, our algorithm relies exclusively on previous neuronal population activities, without using knowledge about the timing or number of external stimulus changes. We apply our change point detection methods to experimental data obtained by multi-electrode recordings from turtle retinal ganglion cells, which react to changes in light stimulation with a range of typical neuronal activity patterns. We systematically examine how variations of mathematical assumptions (Poisson, Gaussian, and Gamma distributions) used for the algorithms may affect the detection of an unknown number of stimulus changes in our data and compare these CUSUM methods with the standard Rate Change method. Our results suggest which versions of the CUSUM algorithm could be useful for different types of specific data sets.

4.
Biom J ; 56(1): 23-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186131

RESUMO

Understanding the way stimulus properties are encoded in the nerve cell responses of sensory organs is one of the fundamental scientific questions in neurosciences. Different neuronal coding hypotheses can be compared by use of an inverse procedure called stimulus reconstruction. Here, based on different attributes of experimentally recorded neuronal responses, the values of certain stimulus properties are estimated by statistical classification methods. Comparison of stimulus reconstruction results then allows to draw conclusions about relative importance of covariate features. Since many stimulus properties have a natural order and can therefore be considered as ordinal, we introduce a bivariate ordinal probit model to obtain classifications for the combination of light intensity and velocity of a visual dot pattern based on different covariates extracted from recorded spike trains. For parameter estimation, we develop a Bayesian Gibbs sampler and incorporate penalized splines to model nonlinear effects. We compare the classification performance of different individual cell covariates and simple features of groups of neurons and find that the combination of at least two covariates increases the classification performance significantly. Furthermore, we obtain a non-linear effect for the first spike latency. The model is compared to a naïve Bayesian stimulus estimation method where it yields comparable misclassification rates for the given dataset. Hence, the bivariate ordinal probit model is shown to be a helpful tool for stimulus reconstruction particularly thanks to its flexibility with respect to the number of covariates as well as their scale and effect type.


Assuntos
Biometria/métodos , Modelos Biológicos , Neurônios/citologia , Teorema de Bayes , Escuridão , Análise Multivariada , Neurônios/efeitos da radiação , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos da radiação , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...