Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 48: 101225, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785425

RESUMO

OBJECTIVE: Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 20ß-dihydrocorticosterone (20ß-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states. METHODS: The actions of 20ß-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists. Mice lacking one Cbr1 allele and mice overexpressing Cbr1 in their adipose tissue underwent metabolic phenotyping before and after induction of obesity with high-fat feeding. RESULTS: 20ß-DHB activated both the glucocorticoid and mineralocorticoid receptor in adipose tissue and systemic administration to wild-type mice induced glucose intolerance, an effect that was ameliorated by both glucocorticoid and mineralocorticoid receptor antagonism. Cbr1 haploinsufficient lean male mice had lower fasting glucose and improved glucose tolerance compared with littermate controls, a difference that was abolished by administration of 20ß-DHB and absent in female mice with higher baseline adipose 20ß-DHB concentrations than male mice. Conversely, overexpression of Cbr1 in adipose tissue resulted in worsened glucose tolerance and higher fasting glucose in lean male and female mice. However, neither Cbr1 haploinsfficiency nor adipose overexpression affected glucose dyshomeostasis induced by high-fat feeding. CONCLUSIONS: Carbonyl reductase 1 is a novel regulator of glucocorticoid and mineralocorticoid receptor activation in adipose tissue that influences glucose homeostasis in lean mice.


Assuntos
Tecido Adiposo/metabolismo , Oxirredutases do Álcool/metabolismo , Glucocorticoides/metabolismo , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/genética , Oxirredutases do Álcool/genética , Animais , Corticosterona/análogos & derivados , Corticosterona/sangue , Corticosterona/farmacologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Intolerância à Glucose/genética , Células HEK293 , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561390

RESUMO

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Assuntos
Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Animais , Ilhas de CpG , Técnicas de Introdução de Genes , Células HeLa , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Neurônios/patologia , Domínios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia
3.
Epigenomes ; 3(1): 7, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31354981

RESUMO

Most human genes are associated with promoters embedded in non-methylated, G + C-rich CpG islands (CGIs). Not all CGIs are found at annotated promoters, however, raising the possibility that many serve as promoters for transcripts that do not code for proteins. To test this hypothesis, we searched for novel transcripts in embryonic stem cells (ESCs) that originate within orphan CGIs. Among several candidates, we detected a transcript that included three members of the let-7 micro-RNA family: Let-7a-1, let-7f-1, and let-7d. Deletion of the CGI prevented expression of the precursor RNA and depleted the included miRNAs. Mice homozygous for this mutation were sub-viable and showed growth and other defects. The results suggest that despite the identity of their seed sequences, members of the let-7 miRNA family exert distinct functions that cannot be complemented by other members.

4.
Genes Dev ; 32(23-24): 1514-1524, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463906

RESUMO

Duplication of the X-linked MECP2 gene causes a severe neurological syndrome whose molecular basis is poorly understood. To determine the contribution of known functional domains to overexpression toxicity, we engineered a mouse model that expresses wild-type or mutated MeCP2 from the Mapt (Tau) locus in addition to the endogenous protein. Animals that expressed approximately four times the wild-type level of MeCP2 failed to survive to weaning. Strikingly, a single amino acid substitution that prevents MeCP2 from binding to the TBL1X(R1) subunit of nuclear receptor corepressor 1/2 (NCoR1/2) complexes, when expressed at equivalent high levels, was phenotypically indistinguishable from wild type, suggesting that excessive corepressor recruitment underlies toxicity. In contrast, mutations affecting the DNA-binding domain were toxic when overexpressed. As the NCoR1/2 corepressors are thought to act through histone deacetylation by histone deacetylase 3 (HDAC3), we asked whether mutations in NCoR1 and NCoR2 that drastically reduced their ability to activate this enzyme would relieve the MeCP2 overexpression phenotype. Surprisingly, severity was unaffected, indicating that the catalytic activity of HDAC3 is not the mediator of toxicity. Our findings shed light on the molecular mechanisms underlying MECP2 duplication syndrome and call for a re-evaluation of the precise biological role played by corepressor recruitment.


Assuntos
Expressão Gênica , Histona Desacetilases/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/toxicidade , Animais , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Técnicas de Inativação de Genes , Histona Desacetilases/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos , Mutação , Doenças do Sistema Nervoso/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Domínios Proteicos , Proteínas tau/metabolismo
5.
Cell Rep ; 24(9): 2213-2220, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157418

RESUMO

MeCP2 is a nuclear protein that is mutated in the severe neurological disorder Rett syndrome (RTT). The ability to target ß-galactosidase to the nucleus was previously used to identify a conserved nuclear localization signal (NLS) in MeCP2 that interacts with the nuclear import factors KPNA3 and KPNA4. Here, we report that nuclear localization of MeCP2 does not depend on its NLS. Instead, our data reveal that an intact methyl-CpG binding domain (MBD) is sufficient for nuclear localization, suggesting that MeCP2 can be retained in the nucleus by its affinity for DNA. Consistent with these findings, we demonstrate that disease progression in a mouse model of RTT is unaffected by an inactivating mutation in the NLS of MeCP2. Taken together, our work reveals an unexpected redundancy between functional domains of MeCP2 in targeting this protein to the nucleus, potentially explaining why NLS-inactivating mutations are rarely associated with disease.


Assuntos
DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sinais de Localização Nuclear/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ilhas de CpG , DNA/genética , Modelos Animais de Doenças , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Síndrome de Rett/metabolismo , alfa Carioferinas/metabolismo
6.
Hum Mol Genet ; 27(14): 2531-2545, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29718204

RESUMO

Most missense mutations causing Rett syndrome (RTT) affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterized domains. We studied the molecular consequences of four of these 'non-canonical' mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of RTT. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilize these mutant proteins may be of therapeutic value.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Repressoras/genética , Síndrome de Rett/genética , Animais , Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/patologia , Síndrome de Rett/patologia
7.
Nature ; 550(7676): 398-401, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29019980

RESUMO

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Assuntos
Teste de Complementação Genética , Terapia Genética/métodos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Deleção de Sequência , Células 3T3 , Animais , Encéfalo/metabolismo , DNA/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Mutação de Sentido Incorreto , Fenótipo , Domínios Proteicos/genética , Estabilidade Proteica , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Transdução Genética
8.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26647311

RESUMO

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Assuntos
Alelos , Proteína 2 de Ligação a Metil-CpG/genética , Mutação de Sentido Incorreto , Síndrome de Rett/genética , Síndrome de Rett/patologia , Substituição de Aminoácidos , Animais , DNA/genética , DNA/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Fenótipo , Ligação Proteica , Síndrome de Rett/metabolismo , Síndrome de Rett/mortalidade , Índice de Gravidade de Doença , Transdução de Sinais , Análise de Sobrevida
9.
Science ; 338(6113): 1469-72, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239737

RESUMO

Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.


Assuntos
Inativação Gênica , Impressão Genômica , RNA Longo não Codificante/metabolismo , Receptor IGF Tipo 2/genética , Transcrição Gênica , Processamento Alternativo , Animais , Células Cultivadas , Camundongos , Família Multigênica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética
10.
PLoS Genet ; 8(3): e1002540, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396659

RESUMO

A CpG island (CGI) lies at the 5' end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Epigênese Genética , Impressão Genômica , Regiões Promotoras Genéticas , Precursores de RNA/genética , RNA não Traduzido/genética , Animais , Diferenciação Celular , Células Cultivadas , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Recombinação Homóloga , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Deleção de Sequência , Sequências de Repetição em Tandem , Sítio de Iniciação de Transcrição
11.
Curr Opin Genet Dev ; 20(2): 164-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20153958

RESUMO

Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression.


Assuntos
Epigênese Genética/genética , Impressão Genômica , Modelos Genéticos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Humanos , Masculino
12.
Development ; 136(11): 1771-83, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19429783

RESUMO

Non-coding RNAs (ncRNAs) that regulate gene expression in cis or in trans are a shared feature of prokaryotic and eukaryotic genomes. In mammals, cis-acting functions are associated with macro ncRNAs, which can be several hundred thousand nucleotides long. Imprinted ncRNAs are well-studied macro ncRNAs that have cis-regulatory effects on multiple flanking genes. Recent advances indicate that they employ different downstream mechanisms to regulate gene expression in embryonic and placental tissues. A better understanding of these downstream mechanisms will help to improve our general understanding of the function of ncRNAs throughout the genome.


Assuntos
Impressão Genômica/fisiologia , RNA não Traduzido/fisiologia , Animais , Metilação de DNA/fisiologia , Embrião de Mamíferos/metabolismo , Feminino , Histonas/metabolismo , Camundongos , Placenta/metabolismo , Gravidez
13.
Development ; 136(3): 437-48, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141673

RESUMO

Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles.


Assuntos
Células-Tronco Embrionárias/citologia , Impressão Genômica , RNA não Traduzido/biossíntese , Receptor IGF Tipo 2/biossíntese , Alelos , Animais , Diferenciação Celular , Células Cultivadas , Ilhas de CpG , Metilação de DNA , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Camundongos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Receptor IGF Tipo 2/genética
14.
Genome Res ; 19(2): 221-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19047520

RESUMO

In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons.


Assuntos
Cromossomos de Mamíferos/metabolismo , DNA Intergênico/metabolismo , Inativação Gênica/fisiologia , Histonas/metabolismo , Multimerização Proteica/fisiologia , Algoritmos , Animais , Imunoprecipitação da Cromatina/métodos , Bandeamento Cromossômico/métodos , Cromossomos de Mamíferos/química , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Especificidade por Substrato
15.
EMBO J ; 27(23): 3116-28, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19008856

RESUMO

The Airn macro ncRNA is the master regulator of imprinted expression in the Igf2r imprinted gene cluster where it silences three flanking genes in cis. Airn transcription shows unusual features normally viewed as promoter specific, such as impaired post-transcriptional processing and a macro size. The Airn transcript is 108 kb long, predominantly unspliced and nuclear localized, with only a minority being variably spliced and exported. Here, we show by deletion of the Airn ncRNA promoter and replacement with a constitutive strong or weak promoter that splicing suppression and termination, as well as silencing activity, are maintained by strong Airn expression from an exogenous promoter. This indicates that all functional regions are located within the Airn transcript. DNA methylation of the maternal imprint control element (ICE) restricts Airn expression to the paternal allele and we also show that a strong active promoter is required to maintain the unmethylated state of the paternal ICE. Thus, Airn expression not only induces silencing of flanking mRNA genes but also protects the paternal copy of the ICE from de novo methylation.


Assuntos
Inativação Gênica , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transcrição Gênica , Células Cultivadas , Metilação de DNA , Expressão Gênica , Humanos , Família Multigênica , Deleção de Sequência
16.
Trends Genet ; 23(6): 284-92, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17445943

RESUMO

Non-coding RNAs (ncRNAs) with gene regulatory functions are starting to be seen as a common feature of mammalian gene regulation with the discovery that most of the transcriptome is ncRNA. The prototype has long been the Xist ncRNA, which induces X-chromosome inactivation in female cells. However, a new paradigm is emerging--the silencing of imprinted gene clusters by long ncRNAs. Here, we review models by which imprinted ncRNAs could function. We argue that an Xist-like model is only one of many possible solutions and that imprinted ncRNAs could provide the better model for understanding the function of the new class of ncRNAs associated with non-imprinted mammalian genes.


Assuntos
Inativação Gênica , Impressão Genômica , RNA não Traduzido/genética , Transcrição Gênica , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica , Genoma Humano , Humanos , RNA Longo não Codificante , Inativação do Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...