Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 20(1): 629-640, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602850

RESUMO

The peripheral and central auditory subsystems together form a complex sensory network that allows an organism to hear. The genetic programs of the two subsystems must therefore be tightly coordinated during development. Yet, their interactions and common expression pathways have never been systematically explored. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and are essential for normal development of the auditory system. We performed mRNA and small-RNA sequencing of organs from both auditory subsystems at three critical developmental timepoints (E16, P0, P16) to obtain a comprehensive and unbiased insight of their expression profiles. Our analysis reveals common and organ-specific expression patterns for differentially regulated mRNAs and miRNAs, which could be clustered with a particular selection of functions such as inner ear development, Wnt signalling, K+ transport, and axon guidance, based on gene ontology. Bioinformatics detected enrichment of predicted targets of specific miRNAs in the clusters and predicted regulatory interactions by monitoring opposite trends of expression of miRNAs and their targets. This approach identified six miRNAs as strong regulatory candidates for both subsystems. Among them was miR-96, an established critical factor for proper development in both subsystems, demonstrating the strength of our approach. We suggest that other miRNAs identified by this analysis are also common effectors of proper hearing acquirement. This first combined comprehensive analysis of the developmental program of the peripheral and central auditory systems provides important data and bioinformatics insights into the shared genetic program of the two sensory subsystems and their regulation by miRNAs.


Assuntos
MicroRNAs , Complexo Olivar Superior , Cóclea , Biologia Computacional , Ontologia Genética , MicroRNAs/genética , RNA Mensageiro/genética
2.
Hear Res ; 428: 108666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566643

RESUMO

Non-coding RNAs (ncRNAs) play a critical role in the entire body, and their mis-regulation is often associated with disease. In parallel with the advances in high-throughput sequencing technologies, there is a great deal of focus on this broad class of RNAs. Although these molecules are not translated into proteins, they are now well established as significant regulatory components in many biological pathways and pathological conditions. ncRNAs can be roughly divided into two main sub-groups based on the length of the transcript, with both the small and long non-coding RNAs having diverse regulatory functions. The smaller length group includes ribosomal RNAs (rRNA), transfer RNAs (tRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), microRNAs (miRNA), small interfering RNAs (siRNA), and PIWI-associated RNAs (piRNA). The longer length group includes linear long non-coding RNAs (lncRNA) and circular RNAs (circRNA). This review is designed to present the different classes of small and long ncRNA molecules and describe some of their known roles in physiological and pathological conditions, as well as methods used to assess the validity and function of miRNAs and lncRNAs, with a focus on their role and functions in the inner ear, hearing and deafness.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Interferente Pequeno/genética , RNA Longo não Codificante/genética , Mamíferos/genética , Mamíferos/metabolismo
3.
Hum Genet ; 141(3-4): 323-333, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34491412

RESUMO

The age of sequencing has provided unprecedented insights into the human genome. The coding region of the genome comprises nearly 20,000 genes, of which approximately 4000 are associated with human disease. Beyond the protein-coding genome, which accounts for only 3% of the genome, lies a vast pool of regulatory elements in the form of promoters, enhancers, RNA species, and other intricate elements. These features undoubtably influence human health and disease, and as a result, a great deal of effort is currently being invested in deciphering their identity and mechanism. While a paucity of material has caused a lag in identifying these elements in the inner ear, the emergence of technologies for dealing with a minimal number of cells now has the field working overtime to catch up. Studies on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), methylation, histone modifications, and more are ongoing. A number of microRNAs and other noncoding elements are known to be associated with hearing impairment and there is promise that regulatory elements will serve as future tools and targets of therapeutics and diagnostics. This review covers the current state of the field and considers future directions for the noncoding genome and implications for hearing loss.


Assuntos
Surdez , Perda Auditiva , MicroRNAs , RNA Longo não Codificante , Surdez/genética , Genoma Humano , Perda Auditiva/genética , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética
4.
RNA Biol ; 18(8): 1160-1169, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33131415

RESUMO

The auditory system is a complex sensory network with an orchestrated multilayer regulatory programme governing its development and maintenance. Accumulating evidence has implicated long non-coding RNAs (lncRNAs) as important regulators in numerous systems, as well as in pathological pathways. However, their function in the auditory system has yet to be explored. Using a set of specific criteria, we selected four lncRNAs expressed in the mouse cochlea, which are conserved in the human transcriptome and are relevant for inner ear function. Bioinformatic characterization demonstrated a lack of coding potential and an absence of evolutionary conservation that represent properties commonly shared by their class members. RNAscope®  analysis of the spatial and temporal expression profiles revealed specific localization to inner ear cells. Sub-cellular localization analysis presented a distinct pattern for each lncRNA and mouse tissue expression evaluation displayed a large variability in terms of level and location. Our findings establish the expression of specific lncRNAs in different cell types of the auditory system and present a potential pathway by which the lncRNA Gas5 acts in the inner ear. Studying lncRNAs and deciphering their functions may deepen our knowledge of inner ear physiology and morphology and may reveal the basis of as yet unresolved genetic hearing loss-related pathologies. Moreover, our experimental design may be employed as a reference for studying other inner ear-related lncRNAs, as well as lncRNAs expressed in other sensory systems.


Assuntos
Cóclea/metabolismo , Loci Gênicos , Perda Auditiva Neurossensorial/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Cóclea/patologia , Biologia Computacional/métodos , Sequência Conservada , Embrião de Mamíferos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Camundongos , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Transcriptoma
5.
Front Cell Dev Biol ; 8: 615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766247

RESUMO

Striatin, a subunit of the serine/threonine phosphatase PP2A, is a core member of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complexes. The protein is expressed in the cell junctions between epithelial cells, which play a role in maintaining cell-cell adhesion. Since the cell junctions are crucial for the function of the mammalian inner ear, we examined the localization and function of striatin in the mouse cochlea. Our results show that in neonatal mice, striatin is specifically expressed in the cell-cell junctions of the inner hair cells, the receptor cells in the mammalian cochlea. Auditory brainstem response measurements of striatin-deficient mice indicated a progressive, high-frequency hearing loss, suggesting that striatin is essential for normal hearing. Moreover, scanning electron micrographs of the organ of Corti revealed a moderate degeneration of the outer hair cells in the middle and basal regions, concordant with the high-frequency hearing loss. Additionally, striatin-deficient mice show aberrant ribbon synapse maturation. Loss of the outer hair cells, combined with the aberrant ribbon synapse distribution, may lead to the observed auditory impairment. Together, these results suggest a novel function for striatin in the mammalian auditory system.

6.
Sci Rep ; 8(1): 17348, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478432

RESUMO

The inner ear is a complex structure responsible for hearing and balance, and organ pathology is associated with deafness and balance disorders. To evaluate the role of epigenomic dynamics, we performed whole genome bisulfite sequencing at key time points during the development and maturation of the mouse inner ear sensory epithelium (SE). Our single-nucleotide resolution maps revealed variations in both general characteristics and dynamics of DNA methylation over time. This allowed us to predict the location of non-coding regulatory regions and to identify several novel candidate regulatory factors, such as Bach2, that connect stage-specific regulatory elements to molecular features that drive the development and maturation of the SE. Constructing in silico regulatory networks around sites of differential methylation enabled us to link key inner ear regulators, such as Atoh1 and Stat3, to pathways responsible for cell lineage determination and maturation, such as the Notch pathway. We also discovered that a putative enhancer, defined as a low methylated region (LMR), can upregulate the GJB6 gene and a neighboring non-coding RNA. The study of inner ear SE methylomes revealed novel regulatory regions in the hearing organ, which may improve diagnostic capabilities, and has the potential to guide the development of therapeutics for hearing loss by providing multiple intervention points for manipulation of the auditory system.


Assuntos
Conexina 30/genética , Metilação de DNA/fisiologia , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Surdez/genética , Orelha Interna/citologia , Elementos Facilitadores Genéticos , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Fatores do Domínio POU/genética , Gravidez , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053855

RESUMO

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Assuntos
Encefalopatias/genética , Fissura Palatina/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Fácies , Deficiência Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microcefalia/genética , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Técnicas de Patch-Clamp , Linhagem , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
8.
Sci Rep ; 7(1): 8637, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819115

RESUMO

Mammalian genomes encode multiple layers of regulation, including a class of RNA molecules known as long non-coding RNAs (lncRNAs). These are >200 nucleotides in length and similar to mRNAs, they are capped, polyadenylated, and spliced. In contrast to mRNAs, lncRNAs are less abundant and have higher tissue specificity, and have been linked to development, epigenetic processes, and disease. However, little is known about lncRNA function in the auditory and vestibular systems, or how they play a role in deafness and vestibular dysfunction. To help address this need, we performed a whole-genome identification of lncRNAs using RNA-seq at two developmental stages of the mouse inner ear sensory epithelium of the cochlea and vestibule. We identified 3,239 lncRNA genes, most of which were intergenic (lincRNAs) and 721 are novel. We examined temporal and tissue specificity by analyzing the developmental profiles on embryonic day 16.5 and at birth. The spatial and temporal patterns of three lncRNAs, two of which are in proximity to genes associated with hearing and deafness, were explored further. Our findings indicate that lncRNAs are prevalent in the sensory epithelium of the mouse inner ear and are likely to play key roles in regulating critical pathways for hearing and balance.


Assuntos
Córtex Auditivo/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , RNA Longo não Codificante/genética , Transcriptoma , Vestíbulo do Labirinto/metabolismo , Animais , Cóclea/metabolismo , Orelha Interna/metabolismo , Regulação da Expressão Gênica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...