Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(6): 060401, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234500

RESUMO

Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell's inequality with estimated p values of ≲1.8×10^{-13} and ≲4.0×10^{-33}, respectively, thereby pushing back by ∼600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.

2.
Phys Rev Lett ; 116(15): 150401, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127944

RESUMO

Tests of local realism and macrorealism have historically been discussed in very similar terms: Leggett-Garg inequalities follow Bell inequalities as necessary conditions for classical behavior. Here, we compare the probability polytopes spanned by all measurable probability distributions for both scenarios and show that their structure differs strongly between spatially and temporally separated measurements. We arrive at the conclusion that, in contrast to tests of local realism where Bell inequalities form a necessary and sufficient set of conditions, no set of inequalities can ever be necessary and sufficient for a macrorealistic description. Fine's famous proof that Bell inequalities are necessary and sufficient for the existence of a local realistic model, therefore, cannot be transferred to macrorealism. A recently proposed condition, no-signaling in time, fulfills this criterion, and we show why it is better suited for future experimental tests and theoretical studies of macrorealism. Our work thereby identifies a major difference between the mathematical structures of local realism and macrorealism.

3.
Phys Rev Lett ; 115(25): 250401, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722905

RESUMO

Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

4.
J Mater Chem B ; 3(25): 5095-5102, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262461

RESUMO

We present a reference-electrode free, all organic K+ sensitive ion sensing platform fabricated by simplest means on a plain sheet of paper. This platform is based on two identical ion selective electrodes (ISEs) which are assembled by bonding a polymeric ion selective membrane (ISM) directly onto a drop-casted PEDOT:PSS electrode. Taking full advantage of the so called pulsetrode concept, a current pulse is used to measure the concentration of the targeted ion. The current forces an ion flux out of the first ISE, through the sample and into the second ISE. This flux leads to a well-defined potential jump at the second ISE, as soon as the target ion locally depletes within the analyte, whereas the current induced potential change at the first ISE does not depend noticeably on the type of background electrolyte. Hence, the potential difference between the ISEs, required to apply the current is directly related to the ion concentration within the sample. This concept allows for a 20-fold sensitivity enhancement compared to classical potentiometric measurements in physiological backgrounds. As mutual potential drifts of the ISEs cancel out, the sensor response showed excellent stability and did not change during multiple measurements over three months.

5.
Adv Mater ; 25(47): 6895-9, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24105832

RESUMO

An ion-sensitive electrolyte-gated organic field-effect transistor for selective and reversible detection of sodium (Na(+) ) down to 10(-6) M is presented. The inherent low voltage - high current operation of these transistors in combination with a state-of-the-art ion-selective membrane proves to be a novel, versatile modular sensor platform.

6.
Nature ; 497(7448): 227-30, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23584590

RESUMO

The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint--namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble. To do this, we use the Eberhard form of Bell's inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms. Technical improvements of the photon source and high-efficiency transition-edge sensors were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.

7.
Proc Natl Acad Sci U S A ; 110(4): 1221-6, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288900

RESUMO

The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

8.
Opt Express ; 20(21): 23126-37, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188277

RESUMO

We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.


Assuntos
Dispositivos Ópticos , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teoria Quântica , Espalhamento de Radiação
9.
Nature ; 489(7415): 269-73, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22951967

RESUMO

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

10.
Proc Natl Acad Sci U S A ; 107(46): 19708-13, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041665

RESUMO

Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, "loopholes" arise which allow observed violations to still be explained by local realistic theories. Violating Bell's inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bell's inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within nondeterminism, i.e., in the context of stochastic local realism.

11.
Phys Rev Lett ; 102(11): 110404, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392177

RESUMO

Bell conjectured that a positive Wigner function does not allow violation of the inequalities imposed by local hidden variable theories. A requirement for this conjecture is "when phase space measurements are performed." We introduce the theory-independent concept of "operationally local transformations" which refers to the change of the switch on a local measurement apparatus. We show that two separated parties, performing only phase space measurements on a composite quantum system with a positive Wigner function and performing only operationally local transformations that preserve this positivity, can nonetheless violate Bell's inequality. Such operationally local transformations are realized using entangled ancillae.

12.
Phys Rev Lett ; 101(9): 090403, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851590

RESUMO

Why do we not experience a violation of macroscopic realism in everyday life. Normally, no violation can be seen either because of decoherence or the restriction of coarse-grained measurements, transforming the time evolution of any quantum state into a classical time evolution of a statistical mixture. We find the sufficient condition for these classical evolutions for spin systems under coarse-grained measurements. However, there exist "nonclassical" Hamiltonians whose time evolution cannot be understood classically, although at every instant of time the quantum state appears as a classical mixture. We suggest that such Hamiltonians are unlikely to be realized in nature because of their high computational complexity.

13.
Phys Rev Lett ; 99(18): 180403, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17995385

RESUMO

Conceptually different from the decoherence program, we present a novel theoretical approach to macroscopic realism and classical physics within quantum theory. It focuses on the limits of observability of quantum effects of macroscopic objects, i.e., on the required precision of our measurement apparatuses such that quantum phenomena can still be observed. First, we demonstrate that for unrestricted measurement accuracy, no classical description is possible for arbitrarily large systems. Then we show for a certain time evolution that under coarse-grained measurements, not only macrorealism but even classical Newtonian laws emerge out of the Schrödinger equation and the projection postulate.

14.
Appl Opt ; 45(24): 6059-64, 2006 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-16892103

RESUMO

We present two methods for determining the absolute detection efficiency of photon-counting detectors directly from their singles rates under illumination from a nonclassical light source. One method is based on a continuous variable analog to coincidence counting in discrete photon experiments, but it does not actually rely on high detector time resolutions. The second method is based on difference detection, which is a typical detection scheme in continuous variable quantum optics experiments. Since no coincidence detection is required with either method, they are useful for detection efficiency measurements of photodetectors with detector time resolutions far too low to resolve coincidence events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...