Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(8): 13055-13064, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34291918

RESUMO

Controlling the microstructures in fibers, such as crystalline structures and microvoids, is a crucial challenge for the development of mechanically strong graphene fibers (GFs). To date, although GFs graphitized at high temperatures have exhibited high tensile strength, GFs still have limited the ultimate mechanical strength owing to the presence due to the structural defects, including the imperfect alignment of graphitic crystallites and the presence of microsized voids. In this study, we significantly enhanced the mechanical strength of GF by controlling microstructures of fibers. GF was hybridized by incorporating polyacrylonitrile (PAN) in the graphene oxide (GO) dope solution. In addition, we controlled the orientation of the inner structure by applying a tensile force at 800 °C. The results suggest that PAN can act as a binder for graphene sheets and can facilitate the rearrangement of the fiber's microstructure. PAN was directionally carbonized between graphene sheets due to the catalytic effect of graphene. The resulting hybrid GFs successfully displayed a high strength of 1.10 GPa without undergoing graphitization at extremely high temperatures. We believe that controlling the alignment of nanoassembled structure is an efficient strategy for achieving the inherent performance characteristics of graphene at the level of multidimensional structures including films and fibers.

2.
Nat Commun ; 12(1): 3395, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099643

RESUMO

Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g-1 vs. <0.03 mAh g-1) at -40 °C under reduced pressure of the electrolyte.

3.
ACS Appl Mater Interfaces ; 11(9): 9011-9022, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30653285

RESUMO

Fiber nanomaterials can become fundamental devices that can be woven into smart textiles, for example, miniaturized fiber-based supercapacitors (FSCs). They can be utilized for portable, wearable electronics and energy storage devices, which are highly prospective areas of research in the future. Herein, we developed porous carbon nanotube-graphene hybrid fibers (CNT-GFs) for all-solid-state symmetric FSCs, which were assembled through wet-spinning followed by a hydrothermal activation process using environmentally benign chemicals (i.e., H2O2 and NH4OH in deionized water). The barriers that limited effective ion accessibility in GFs were overcome by the intercalation of CNTs in the GFs which enhanced their electrical conductivity and mechanical properties as well. The all-solid-state symmetric FSCs of a precisely controlled activated hybrid fiber (a-CNT-GF) electrode exhibited an enhanced volumetric capacitance of 60.75 F cm-3 compared with those of a pristine CNT-GF electrode (19.80 F cm-3). They also showed a volumetric energy density (4.83 mWh cm-3) roughly 3 times higher than that of untreated CNT-GFs (1.50 mWh cm-3). The excellent mechanical flexibility and structural stability of a miniaturized a-CNT-GF are highlighted by the demonstration of negligible differences in capacitance upon bending and twisting. The mechanism of developing porous, large-scale, low-cost electrodes using an environmentally benign activation method presented in this work provides a promising route for designing a new generation of wearable, portable miniaturized energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA