Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38757708

RESUMO

Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38038343

RESUMO

Plasmon-mediated electrochemistry is an emerging area of interest in which the electrochemical reactions are enhanced by employing metal nanostructures possessing localized surface plasmon resonance (LSPR). However, the reaction efficacy is still far below its theoretical limit due to the ultrafast relaxation of LSPR-generated hot carriers. Herein, we introduce p-hydroxythiophenol (PHTP) as a molecular cocatalyst to significantly improve the reaction efficacy in plasmon-mediated electrochemical oxidation of p-aminothiophenol (PATP) on gold nanoparticles. Using electrochemical techniques, in situ Raman spectroscopy, and theoretical calculations, we elucidate that the presence of PHTP improves the hot hole-mediated electrochemical oxidation of PATP by 2-fold through the trapping of plasmon-mediated hot electrons. In addition, the selectivity of PATP oxidation could also be modulated by the introduction of PHTP cocatalyst. This tactic of employing molecular cocatalyst can be drawn out to endorse various plasmonic electrochemical reactions because of its simple protocol, high efficiency, and high selectivity.

3.
Ultrason Sonochem ; 66: 105111, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32248043

RESUMO

Bifunctional electrocatalysts to enable efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for fabricating high performance metal-air batteries and fuel cells. Here, a defect rich nitrogen and sulfur co-doped graphene/iron carbide (NS-GR/Fe3C) nanocomposite as an electrocatalyst for ORR and OER is demonstrated. An ink of NS-GR/Fe3C is developed by homogeneously dispersing the catalyst in a Nafion containing solvent mixture using an ultrasonication bath (Model-DC150H; power - 150 W; frequency - 40 kHz). The ultrasonically prepared ink is used for preparing the electrode for electrochemical studies. In the case of ORR, the positive half-wave potential displayed by NS-GR/Fe3C is 0.859 V (vs. RHE) and for the OER, onset potential is 1.489 V (vs. RHE) with enhanced current density. The optimized NS-GR/Fe3C electrode exhibited excellent ORR/OER bifunctional activities, high methanol tolerance and excellent long-term cycling stability in an alkaline medium. The observed onset potential for NS-GR/Fe3C electrocatalyst is comparable with the commercial noble metal catalyst, thereby revealing one of the best low-cost alternative air-cathode catalysts for the energy conversion and storage application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...