Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1798-807, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999303

RESUMO

The tRNA-modifying enzyme tRNA-guanine transglycosylase (TGT) has been recognized as a drug target for the treatment of the foodborne illness shigellosis. The active site of TGT consists of three pockets: the central guanine/preQ1 recognition site and the ribose-33 and ribose-34 pockets. In previous work, lin-benzoguanines and lin-benzohypoxanthines, which differ by the presence of an exocyclic NH2 group in the former and its absence in the latter, were used as central scaffolds that bind to the guanine/preQ1 recognition site and allow suitable functionalization along exit vectors targeting the two ribose pockets. The substituents for both of these two pockets have been optimized individually. Here, a series of bifunctionalized inhibitors that occupy both ribose pockets are reported for the first time. Dissociation constants Kd down to the picomolar range were measured for the bifunctionalized lin-benzoguanine-based ligands and Kd values in the nanomolar range were measured for the corresponding lin-benzohypoxanthine-based ligands. The binding mode of all inhibitors was elucidated by X-ray crystal structure analysis. A remarkable influence of the crystallization protocol on the solvation pattern in the solid state and the residual mobility of the bound ligands was observed.


Assuntos
Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/química , Zymomonas/enzimologia , Ligação Competitiva , Cristalografia por Raios X , Guanina/análogos & derivados , Pentosiltransferases/metabolismo , Ligação Proteica
2.
Chemistry ; 18(30): 9246-57, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22736391

RESUMO

The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of Shigella flexneri. Herein, the molecular recognition properties of a guanine binding pocket in Zymomonas mobilis TGT are investigated with a series of lin-benzohypoxanthine- and lin-benzoguanine-based inhibitors that bear substituents to occupy either the ribose-33 or the ribose-34 pocket. The three inhibitor scaffolds differ by the substituent at C(6) being H, NH(2), or NH-alkyl. These differences lead to major changes in the inhibition constants, pK(a) values, and binding modes. Compared to the lin-benzoguanines, with an exocyclic NH(2) at C(6), the lin-benzohypoxanthines without an exocyclic NH(2) group have a weaker affinity as several ionic protein-ligand hydrogen bonds are lost. X-ray cocrystal structure analysis reveals that a new water cluster is imported into the space vacated by the lacking NH(2) group and by a conformational shift of the side chain of catalytic Asp102. In the presence of an N-alkyl group at C(6) in lin-benzoguanine ligands, this water cluster is largely maintained but replacement of one of the water molecules in the cluster leads to a substantial loss in binding affinity. This study provides new insight into the role of water clusters at enzyme active sites and their challenging substitution by ligand parts, a topic of general interest in contemporary structure-based drug design.


Assuntos
Guanina/análogos & derivados , Guanina/química , Hipoxantina/química , Pentosiltransferases/química , Shigella flexneri/química , Shigella flexneri/enzimologia , Água/química , Zymomonas/química , Zymomonas/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Disenteria Bacilar , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
3.
ChemMedChem ; 4(12): 2012-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19894214

RESUMO

In a computational and structural study, we investigated a series of 4-substituted lin-benzoguanines that are potent inhibitors of tRNA-guanine transglycosylase (TGT), a putative target for the treatment of shigellosis. At first glance, it appears self-evident that the placement of a positively charged ligand functional group between the carboxylate groups of two adjacent aspartate residues in the glycosylase catalytic center leads to enhanced ligand binding. The concomitant displacement of water molecules that partially solvate the aspartates prior to ligand binding appears to result as a consequence of this. However, the case study presented herein shows that this premise is much too superficial. Placement of a likely positively charged amino group at such a pivotal position, interfering with the residual water solvation shell, is at best cost-neutral compared with the unsubstituted parent ligand not conflicting with the residual water shell. A ligand that orients a hydroxy group in this position shows even decreased binding. Based on the cost-neutral placement of the amino functionality, hydrophobic side chains can now be further attached to fill, with increasing potency, a small hydrophobic pocket remote to the aspartates. Any attempts to cross the pivotal position between both aspartates with nonpolar scaffolds reveals only decreased binding, even though the waters of the residual solvation shell are successfully repelled. This surprising observation fostered a detailed analysis of the role of water molecules involved in the residual solvation of polar active site residues. Their geometry and putative replacement in the binding pocket of TGT has been studied by a comparative database analysis, computational active site mapping, and a series of crystal structure analyses. Furthermore, conformational preferences of attached hydrophobic moieties explain their contribution to a gradual increase in binding affinity.


Assuntos
Antibacterianos/farmacologia , Domínio Catalítico , Disenteria Bacilar/tratamento farmacológico , Guanina/análogos & derivados , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/metabolismo , Zymomonas/enzimologia , Antibacterianos/química , Cristalografia por Raios X , Guanina/química , Guanina/farmacologia , Modelos Moleculares , Pentosiltransferases/química , Ligação Proteica , Água/química
4.
Chemistry ; 15(41): 10809-17, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19746363

RESUMO

The tRNA-modifying enzyme tRNA-guanine transglycosylase (TGT) is essential for the pathogenic mechanism of Shigella flexneri, the causing agent of the bacterial diarrheal disease shigellosis. Herein, the synthesis of a new class of rationally designed 6-amino-imidazo[4,5-g]quinazolin-8(7H)-one- (lin-benzoguanine) based inhibitors of TGT are reported. In order to accommodate a small hydrophobic crevice opening near the binding site of ribose-34, 2-aminoethyl substituents were introduced in position 4 of the heterocyclic scaffold. For this purpose, a synthetic sequence consisting of iodination, Suzuki cross-coupling, hydroboration, Mitsunobu reaction, and Gabriel synthesis was employed, furnishing a primary amine that served as a common intermediate for the preparation of a series of derivatives. The resulting ligands displayed very low inhibition constants, down to K(i)=2 nM. Substantial additional inhibitory potency is gained by interaction of terminal lipophilic groups attached to the substituent at position 4 with the hydrophobic crevice shaped by Val45 and Leu68. At the same time, the secondary ammonium center in the substituent displaces a cluster of water molecules, solvating the catalytic residues Asp102 and Asp280, without loss in binding affinity. In addition, a synthetic intermediate with an unusual 3,6,7,8,9,10-hexahydroimidazo[4,5-g][1,3]benzodiazepine core, as confirmed by X-ray analysis, is reported.


Assuntos
Imidazóis/síntese química , Pentosiltransferases/antagonistas & inibidores , Quinazolinas/síntese química , Shigella flexneri/enzimologia , Técnicas de Química Combinatória , Desenho de Fármacos , Imidazóis/química , Imidazóis/farmacologia , Estrutura Molecular , Quinazolinas/química , Quinazolinas/farmacologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...