Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Bioengineering (Basel) ; 10(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38002402

RESUMO

Currently used methods to repair craniomaxillofacial (CMF) bone and tooth defects require a multi-staged surgical approach for bone repair followed by dental implant placement. Our previously published results demonstrated significant bioengineered bone formation using human dental pulp stem cell (hDPSC)-seeded tyrosine-derived polycarbonate scaffolds (E1001(1K)-bTCP). Here, we improved upon this approach using a modified TyroFill (E1001(1K)/dicalcium phosphate dihydrate (DCPD)) scaffold-supported titanium dental implant model for simultaneous bone-dental implant repair. TyroFill scaffolds containing an embedded titanium implant, with (n = 3 each time point) or without (n = 2 each time point) seeded hDPCs and Human Umbilical Vein Endothelial Cells (HUVECs), were cultured in vitro. Each implant was then implanted into a 10 mm full-thickness critical-sized defect prepared on a rabbit mandibulee. After 1 and 3 months, replicate constructs were harvested and analyzed using Micro-CT histological and IHC analyses. Our results showed significant new bone formation surrounding the titanium implants in cell-seeded TyroFill constructs. This study indicates the potential utility of hDPSC/HUVEC-seeded TyroFill scaffolds for coordinated CMF bone-dental implant repair.

2.
Biophys Chem ; 302: 107098, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677920

RESUMO

Drug release from polymeric nanoparticles (NPs) is governed by their adsorption onto cell membranes and transmigration across cell walls. These steps are influenced by their interactions with proteins near the cells. These interactions were investigated by studying the sequential adsorption of plasma proteins, albumin (Alb) and fibrinogen (Fg), and micellar NPs using quartz crystal microbalance with dissipation (QCMD), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering (SAXS). The three NPs in the study all have poly(ethylene glycol) (PEG) shells but different cores: amorphous poly(propylene oxide) (PPO), crystalline polycaprolactone (PCL), and poly(desaminotyrosyl-tyrosine octyl ester-co-suberic acid) (DTO-SA). None of the NPs adsorbed onto a pre-adsorbed Fg layer. On the other hand, when the deposition sequence was reversed, Fg was adsorbed onto DTO-SA NP and PCL NP surfaces, but not onto the PPO NP surface. The interactions with Alb were different: DTO-SA did not adsorb onto Alb and vice versa; PPO NP adsorbed onto an Alb layer, but Alb did not adsorb onto the PPO NP layer; and PCL NP reversibly adsorbed onto Alb, but Alb displaced pre-adsorbed PCL NP. Thus, in most instances, the adsorption behavior was asymmetric in that it was dependent on the order of arrival of the adsorbates at the substrate. SAXS data did not show evidence for complex formation in solution. Thus, the solution behavior appears not to be a predictor of the interaction of proteins and the NPs near surfaces. Differing strengths of pairwise interactions of proteins, NPs and substrates account for this adsorption behavior. These differences in interactions could be the results of deformation of the adsorbates immobilized at the surface and the different degrees of surface remodeling that occur upon adsorption. Deformation could lead to disassembly of the NPs that has implications on their ability to release their payload of drugs upon adsorption onto tissue surfaces.


Assuntos
Nanopartículas , Proteínas , Adsorção , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Albuminas , Nanopartículas/química , Propriedades de Superfície
3.
J Mater Chem B ; 11(28): 6621-6633, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37358375

RESUMO

Tissue resorption and remodeling are pivotal steps in successful healing and regeneration, and it is important to design biomaterials that are responsive to regenerative processes in native tissue. The cell types responsible for remodeling, such as macrophages in the soft tissue wound environment and osteoclasts in the bone environment, utilize a class of enzymes called proteases to degrade the organic matrix. Many hydrophobic thermoplastics used in tissue regeneration are designed to degrade and resorb passively through hydrolytic mechanisms, leaving the potential of proteolytic-guided degradation underutilized. Here, we report the design and synthesis of a tyrosol-derived peptide-polyester block copolymer where protease-mediated resorption is tuned through changing the chemistry of the base polymer backbone and protease specificity is imparted through incorporation of specific peptide sequences. Quartz crystal microbalance was used to quantify polymer surface resorption upon exposure to various enzymes. Aqueous solubility of the diacids and the thermal properties of the resulting polymer had a significant effect on enzyme-mediated polymer resorption. While peptide incorporation at 2 mol% had little effect on the final thermal and physical properties of the block copolymers, its incorporation improved polymer resorption significantly in a peptide sequence- and protease-specific manner. To our knowledge, this is the first example of a peptide-incorporated linear thermoplastic with protease-specific sensitivity reported in the literature. The product is a modular system for engineering specificity in how polyesters can resorb under physiological conditions, thus providing a potential framework for improving vascularization and integration of biomaterials used in tissue engineering.


Assuntos
Peptídeos , Polímeros , Polímeros/química , Peptídeos/química , Poliésteres/química , Materiais Biocompatíveis/química , Peptídeo Hidrolases
4.
J Colloid Interface Sci ; 644: 264-274, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120875

RESUMO

HYPOTHESIS: The design of biodegradable tyrosine-derived polymeric surfactants (TyPS) through the use of calculated thermodynamic parameters could lead to phospholipid membrane surface modifiers capable of controlling cellular properties such as viability. Delivery of cholesterol by TyPS nanospheres into membrane phospholipid domains could provide further controlled modulation of membrane physical and biological properties. EXPERIMENT: Calculated Hansen solubility parameters (∂T) and hydrophile:lipophile balances (HLB) were applied to design and synthesize a small family of diblock and triblock TyPS with different hydrophobic blocks and PEG hydrophilic blocks. Self-assembled TyPS/cholesterol nanospheres were prepared in aqueous media via co-precipitation. Cholesterol loading and Langmuir film balance surface pressures of phospholipid monolayers were obtained. TyPS and TyPS/cholesterol nanosphere effects on human dermal cell viability were evaluated by cell culture using poly(ethylene glycol) (PEG) and Poloxamer 188 as controls. FINDINGS: Stable TyPS nanospheres incorporated between 1% and 5% cholesterol. Triblock TyPS formed nanosphere with dimensions significantly smaller than diblock TyPS nanospheres. In accord calculated thermodynamic parameters, cholesterol binding increased with increasing TyPS hydrophobicity. TyPS inserted into phospholipid monolayer films in a manner consistent with their thermodynamic properties and TyPS/cholesterol nanospheres delivered cholesterol into the films. Triblock TyPS/cholesterol nanospheres increased human dermal cell viability, which was indicative of potentially beneficial TyPS effects on cell membrane surface properties.


Assuntos
Nanosferas , Tensoativos , Humanos , Tensoativos/farmacologia , Tirosina/química , Polímeros/química , Polietilenoglicóis/química , Membrana Celular , Fosfolipídeos
5.
Langmuir ; 38(48): 14615-14622, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394992

RESUMO

Poly(ethylene glycol), PEG, known to inhibit protein adsorption, is widely used on the surfaces of biomedical devices when biofilm formation is undesirable. Poly(desaminotyrosyl-tyrosine ethyl ester carbonate), PDTEC, PC for short, has been a promising coating polymer for insertion devices, and it has been anticipated that PEG plays a similar role if it is copolymerized with PC. Earlier studies show that no fibrinogen (Fg) is adsorbed onto PC polymers with PEG beyond the threshold weight percentage. This is attributed to the phase separation of PEG. Further, iodination of the PC units in the PC polymer, (I2PC), has been found to counteract this Fg-repulsive effect by PEG. In this study, we employ surface-sensitive X-ray techniques to demonstrate the surface affinity of Fg toward the air-water interface, particularly in the presence of self-assembled PC-based film, in which its constituent polymer units are assumed to be much more mobile as a free-standing film. Fg is found to form a Gibbs monolayer with its long axis parallel to the aqueous surface, thus maximizing its interactions with hydrophobic interfaces. It influences the amount of insoluble, surface-bound I2PC likely due to the desorption of the formed Fg-I2PC complex and/or the penetration of Fg onto the I2PC film. The results show that the phase behavior at the liquid-polymer interface shall be taken into account for the surface behavior of bulk polymers surrounded by tissue. The ability of PEG units rearranging into a protein-blocking layer, rather than its mere presence in the polymer, is the key to antifouling characteristics desired for polymeric coating on insertion devices.


Assuntos
Fibrinogênio , Polímeros , Adsorção , Polímeros/química , Fibrinogênio/química , Halogenação , Polietilenoglicóis/química , Água/química , Propriedades de Superfície
6.
Bioengineering (Basel) ; 9(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35621493

RESUMO

Here, we describe the characterization of tooth-germ organoids, three-dimensional (3D) constructs cultured in vitro with the potential to develop into living teeth. To date, the methods used to successfully create tooth organoids capable of forming functional teeth have been quite limited. Recently, hydrogel microparticles (HMP) have demonstrated utility in tissue repair and regeneration based on their useful characteristics, including their scaffolding ability, effective cell and drug delivery, their ability to mimic the natural tissue extracellular matrix, and their injectability. These outstanding properties led us to investigate the utility of using HMPs (average diameter: 158 ± 32 µm) derived from methacrylated gelatin (GelMA) (degree of substitution: 100%) to create tooth organoids. The tooth organoids were created by seeding human dental pulp stem cells (hDPSCs) and porcine dental epithelial cells (pDE) onto the HMPs, which provided an extensive surface area for the cells to effectively attach and proliferate. Interestingly, the cell-seeded HMPs cultured on low-attachment tissue culture plates with gentle rocking self-assembled into organoids, within which the cells maintained their viability and morphology throughout the incubation period. The self-assembled organoids reached a volume of ~50 mm3 within two weeks of the in vitro tissue culture. The co-cultured hDPSC-HMP and pDE-HMP structures effectively attached to each other without any externally applied forces. The presence of polarized, differentiated dental cells in these composite tooth-bud organoids demonstrated the potential of self-assembled dental cell HMPs to form tooth-bud organoid-like structures for potential applications in tooth regeneration strategies.

7.
J Colloid Interface Sci ; 623: 247-256, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35588632

RESUMO

HYPOTHESIS: Blending amphiphilic triblock (A-B-A) and diblock (A-B) copolymers comprised of the same hydrophobic tyrosine-derived oligomeric B-block and hydrophilic poly(ethylene glycol) methyl ether (mPEG) A-block can provide highly tunable self-assembled nanosphere particle sizes suitable for biomedical applications. EXPERIMENT: Triblock and diblock copolymers were synthesized via carbodiimide chemistry and were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The amount of free PEG present in the purified copolymers was determined using a standard addition calibration curve and GPC peak deconvolution methods. Nanospheres were prepared by co-precipitation of each copolymer and of copolymer blends over a range of mole ratios. Nanospheres were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and % polymer recovery post-preparation. FINDING: Precise synthesis control produced triblock and diblock copolymers with narrow molecular weight distributions and minimal residual reactants. Self-assembled nanosphere particle sizes were 33 nm for the triblock and 129 nm for the diblock, and the size of their blends increased continuously as a function of mole ratio within that biomedically relevant range. Addition of unreacted PEG had minimal impact on either triblock or diblock nanosphere particle sizes whereas addition of unreacted oligomeric B-block increased nanosphere sizes.


Assuntos
Nanosferas , Amidas , Ésteres , Micelas , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química
8.
Ann Transl Med ; 9(13): 1070, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34422982

RESUMO

BACKGROUND: Previous vascularized composite allograft (VCA) studies from our laboratory have shown that topical FK506 delivery in non-human primates (NHPs) was limited by inadequate dermal penetration and rejection persisted. Herein, we report the first utilization of FK506 via subcutaneously implanted discs to mitigate VCA rejection in NHPs. METHODS: Full major histocompatibility complex (MHC)-mismatched NHP pairs underwent partial-face VCA and FK506 disc implantation along the suture line. All allotransplants were maintained post-operatively for two months on the FK506 discs, methylprednisolone, mycophenolate mofetil, and supplemented with intramuscular FK506 if necessary. Group 1 (n=4) was used for optimization of the implant, while Group 2 (n=3) underwent delayed bone marrow transplantation (DBMT) after two months. VCA skin biopsies and peripheral blood samples were obtained for serial assessment of rejection and mixed chimerism by histopathology and flow cytometry respectively. RESULTS: In Group 1, two technical failures occurred. Of the remaining two NHPs, one developed supratherapeutic levels of FK506 (50-120 ng/mL) and had to be euthanized on postoperative day (POD) 12. Reformulation of the implant resulted in stable FK506 levels (20-30 ng/mL) up to POD12 when further intramuscular (IM) FK506 injections were necessitated. In Group 2, two NHPs survived to undergo conditioning and one successfully developed chimerism at 2-3 weeks post-DBMT (96-97% granulocytes and 7-11% lymphocytes of recipient-origin). However, all three NHPs had to be terminated from study at POD64, 77 and 86 due to underlying post-transplant lymphoproliferative disorder. All VCAs remained rejection-free up to study endpoint otherwise. CONCLUSIONS: This study shows preliminary results of local FK506 implants in potentially mitigating VCA acute rejection for tolerance protocols based on mixed chimerism approach.

9.
Polym Eng Sci ; 61(7): 2012-2022, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421132

RESUMO

Degradable polymers are often desirable for the fabrication of medical implants, but thermal processing of these polymers is a challenge. We describe here how these problems can be addressed by discussing the extrusion of fibers and injection molding of bone pins from a hydrolytically degradable tyrosine-derived polycarbonate. Our initial attempts produced fibers and pins with bubbles, voids, and discoloration, and resulted in the formation of large polymer plugs that seized screws and blocked extruder dies. The material and process parameters that contribute to these issues were investigated by studying the physical and chemical changes that occur during processing. Differential scanning calorimetry (DSC) scans and thermogravimetric analysis combined with IR (TGA-IR) analysis revealed the role of residual moisture and residual solvents that in conjunction with heat cause degradation and crosslinking as indicated by gel permeation chromatography (GPC). Rheology and melt-flow index measurements were useful in characterizing the extent of dependence of polymer viscosity on temperature and molecular weight. With these insights, we could process our polymer into fibers and rods by controlling residual moisture, time and temperature, and by adjusting processing parameters in real-time. The systematic approach described here is applicable to other degradable polymers that are difficult to process.

10.
ACS Biomater Sci Eng ; 7(9): 4454-4462, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34396772

RESUMO

Three-dimensional (3D) printing has emerged as a valuable tool in medicine over the past few decades. With a growing number of applications using this advanced processing technique, new polymer libraries with varied properties are required. Herein, we investigate tyrosol-based poly(ester-arylate)s as biodegradable inks in fused deposition modeling (FDM). Tyrosol-based polycarbonates and polyesters have proven to be useful biomaterials due to their excellent tunability, nonacidic degradation components, and the ability to be functionalized. Polymers are synthesized by polycondensation between a custom diphenol and commercially available diacids. Thermal properties, degradation rates, and mechanical properties are all tunable based on the diphenol and diacid chosen. Evaluation of material print as it relates to chemical structure, molecular weight, and thermal properties was explored. Higher-molecular-weight polymers greater than 50 kDa exhibit thermal degradation during printing and at some points are too viscous to print. It was determined that polymers with lower processing temperatures and molecular weights were printable regardless of the structure. An exception to this was pHTy6 that was printed at 65 kDa with minimal degradation. This is most likely due to its low melting temperature and, as a result, lower printing temperatures. Additionally, chemical improvements were made to incorporate thiol-alkene click chemistry as a means for postprint curing. Low-molecular-weight pHTy6 was end-capped with alkene functionality. This material was then formulated with either a dithiol for chain extension or tetrathiol for cross-linking. Scaffolds were cured after printing for 5, 15, 30 and 60 min intervals where longer cure times resulted in a tougher material. This design builds on the library of biologically active materials previously explored and aims to bring new biomaterials to the field of 3D-printed personal medicine.


Assuntos
Tinta , Impressão Tridimensional , Materiais Biocompatíveis , Álcool Feniletílico/análogos & derivados , Polímeros
11.
ACS Biomater Sci Eng ; 7(6): 2580-2591, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34010557

RESUMO

New biodegradable polymers are needed for use in drug delivery systems to overcome the high burst release, lack of sustained drug release, and acidic degradation products frequently observed in current formulations. Commercially available poly(lactide-co-glycolide) (PLGA) is often used for particle drug release formulations; however, it is often limited by its large burst release and acidic degradation products. Therefore, a biocompatible and biodegradable tyrosol-derived poly(ester-arylate) library has been used to prepare a microparticle drug delivery system which shows sustained delivery of hydrophobic drugs. Studies were performed using polymers with varying hydrophilicity and thermal properties and compared to PLGA. Various drug solubilizing cosolvents were used to load model drugs curcumin, dexamethasone, nicotinamide, and acyclovir. Hydrophobic drugs curcumin and dexamethasone were successfully loaded up to 50 weight percent (wt %), and a linear correlation between drug wt % loaded and the particle glass transition temperature (Tg) was observed. Both curcumin and dexamethasone were visible on the particle surface at 20 wt % loading and higher. By adjusting the polymer concentration during particle formation, release rates were able to be controlled. Release studies of dexamethasone loaded particles with a lower polymer concentration showed a biphasic release profile and complete release after 47 days. Particles prepared using a higher polymer concentration showed sustained release for up to 77 days. Comparably, PLGA showed a traditional triphasic release profile and complete release after 63 days. This novel tyrosol-derived poly(ester-arylate) library can be used to develop injectable, long-term release formulations capable of providing sustained drug delivery.


Assuntos
Preparações Farmacêuticas , Ácido Poliglicólico , Sistemas de Liberação de Medicamentos , Ésteres , Tamanho da Partícula , Álcool Feniletílico/análogos & derivados , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
12.
Small ; 17(18): e2007672, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759364

RESUMO

Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.


Assuntos
Neoplasias da Mama , Nanopartículas , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Durapatita , Feminino , Humanos , Células MCF-7
13.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669673

RESUMO

Amniotic membranes (AM) have anti-fibrotic activity. Exosomes (nano-sized vesicles) function as conduits for intercellular transfer and contain all the necessary components to induce the resolution of fibrosis. In this study, we tested the hypothesis that the anti-fibrotic activity of AM is mediated by exosomes. AM-derived exosomes or amniotic stromal cell-derived exosomes were isolated and characterized. Anti-fibrotic activity of exosomes was evaluated using human hepatic stellate cells (LX-2), an in vitro model of fibrosis. Exosomes isolated from AM tissue-conditioned media had an average size of 75 nm. Exosomes significantly inhibited the proliferation of TGFß1-activated LX-2 but had no effect on the proliferation of non-activated LX-2 cells. Exosomes also reduced the migration of LX-2 in a scratch wound assay. Furthermore, exosomes reduced the gene expression of pro-fibrotic markers such as COL1A1, ACTA, and TGFß1 in LX-2 cells. Interestingly, exosomes isolated from AM tissue under hypoxic conditions seemed to show a stronger anti-fibrotic activity than exosomes isolated from tissue under normoxic conditions. Exosomes released by in vitro cultured AM stromal cells were smaller in size compared with tissue exosomes and also showed anti-fibrotic activity on LX-2 cells. In conclusion, AM-tissue-released exosomes contribute to the anti-fibrotic activity of AM. This is the first report of isolation, characterization, and functional evaluation of exosomes derived from amniotic tissues with the direct comparison between tissue-derived exosomes and cultured cell-derived exosomes.


Assuntos
Âmnio/metabolismo , Exossomos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Separação Celular , Colágeno Tipo I/metabolismo , Exossomos/ultraestrutura , Fibrose , Regulação da Expressão Gênica , Humanos
14.
J Biomed Mater Res A ; 109(5): 733-744, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32654327

RESUMO

Tissue regeneration often requires recruitment of different cell types and rebuilding of two or more tissue layers to restore function. Here, we describe the creation of a novel multilayered scaffold with distinct fiber organizations-aligned to unaligned and dense to porous-to template common architectures found in adjacent tissue layers. Electrospun scaffolds were fabricated using a biodegradable, tyrosine-derived terpolymer, yielding densely-packed, aligned fibers that transition into randomly-oriented fibers of increasing diameter and porosity. We demonstrate that differently-oriented scaffold fibers direct cell and extracellular matrix (ECM) organization, and that scaffold fibers and ECM protein networks are maintained after decellularization. Smooth muscle and connective tissue layers are frequently adjacent in vivo; we show that within a single scaffold, the architecture supports alignment of contractile smooth muscle cells and deposition by fibroblasts of a meshwork of ECM fibrils. We rolled a flat scaffold into a tubular construct and, after culture, showed cell viability, orientation, and tissue-specific protein expression in the tube were similar to the flat-sheet scaffold. This scaffold design not only has translational potential for reparation of flat and tubular tissue layers but can also be customized for alternative applications by introducing two or more cell types in different combinations.


Assuntos
Tecido Conjuntivo/fisiologia , Fibroblastos/fisiologia , Miócitos de Músculo Liso/fisiologia , Polímeros , Alicerces Teciduais , Tirosina/análogos & derivados , Células 3T3 , Animais , Movimento Celular , Células Cultivadas , Humanos , Teste de Materiais , Camundongos , Fenótipo , Polímeros/química , Polímeros/metabolismo , Porosidade , Ratos , Ratos Endogâmicos WKY , Tirosina/química , Tirosina/metabolismo
15.
Adv Healthc Mater ; 10(2): e2000753, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169544

RESUMO

Artificial nerve conduits capable of adequately releasing neurotrophic factors are extensively studied to bridge nerve defects. However, the lack of neurotrophic factors in the proximal area and their visible effects in axonal retrograde transport following nerve injury is one of the factors causing an incomplete nerve regeneration. Herein, an advanced conduit made of silk fibroin is produced, which can incorporate growth factors and promote an effective regeneration after injury. For that, enzymatically crosslinked silk fibroin-based conduits are developed to be used as a platform for the controlled delivery of neurotrophic factors. Nerve growth factor and glial-cell line derived neurotrophic factor (GDNF) are incorporated using two different methodologies: i) crosslinking and ii) absorption method. The release profile is measured by ELISA technique. The bioactivity of the neurotrophic factors is evaluated in vitro by using primary dorsal root ganglia. When implanted in a 10 mm sciatic nerve defect in rats, GDNF-loaded silk fibroin conduits reveal retrograde neuroprotection as compared to autografts and plain silk fibroin conduit. Therefore, the novel design presents a substantial improvement of retrograde trafficking, neurons' protection, and motor nerve reinnervation.


Assuntos
Fibroínas , Traumatismos dos Nervos Periféricos , Animais , Gânglios Espinais , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Ratos , Nervo Isquiático
16.
J Biomed Mater Res A ; 109(7): 1183-1195, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32985789

RESUMO

Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine-derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof-of-concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro-regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen-based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects - likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.


Assuntos
Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Cimento de Policarboxilato/química , Alicerces Teciduais/química , Tirosina/química , Animais , Matriz Extracelular/metabolismo , Nervo Fibular/lesões , Nervo Fibular/metabolismo , Nervo Fibular/fisiologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Suínos
17.
Chembiochem ; 22(7): 1176-1189, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33119960

RESUMO

The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.


Assuntos
Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Técnicas de Química Analítica/métodos , SARS-CoV-2/isolamento & purificação , Animais , Humanos
19.
Materialia (Oxf) ; 92020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32968719

RESUMO

Optimal repair of large craniomaxillofacial (CMF) defects caused by trauma or disease requires the development of new, synthetic osteoconductive materials in combination with cell-based therapies, to overcome the limitations of traditionally used bone graft substitutes. In this study, tyrosine-derived polycarbonate, E1001(1k) scaffolds were fabricated to incorporate the osteoinductive coating, Dicalcium phosphate dihydrate (DCPD). The biocompatibility of E1001(1k)-DCPD, E1001(1k)-ßTCP and E1001(1k) scaffolds was compared using in vitro culture with human dental pulp stem cells (hDPSCs). We found that the DCPD coating was converted to carbonated hydroxyapatite over time in in vitro culture in Osteogenic Media, while the ßTCP did not. hDPSCs exhibited slow initial attachment and proliferation on DCPD E1001(1k) scaffolds, but subsequently improved over time in culture, and promoted osteogenic differentiation. To the best of our knowledge, this study highlights for the first time the effects of Osteogenic Media on phase changes of DCPD, and on DCPD scaffold cytocompatibility with hDPSCs. DCPD showed similar hDPSC biocompatibility and osteoconductivity as compared to ßTCP, and osteogenic differentiation of seeded hDPSCs. These studies suggest that E1001(1k)-DCPD scaffolds are a superior tool for craniofacial bone regeneration and provide the foundation for future in vivo testing.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32766225

RESUMO

The ability to effectively repair craniomaxillofacial (CMF) bone defects in a fully functional and aesthetically pleasing manner is essential to maintain physical and psychological health. Current challenges for CMF repair therapies include the facts that craniofacial bones exhibit highly distinct properties as compared to axial and appendicular bones, including their unique sizes, shapes and contours, and mechanical properties that enable the ability to support teeth and withstand the strong forces of mastication. The study described here examined the ability for tyrosine-derived polycarbonate, E1001(1K)/ß-TCP scaffolds seeded with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) to repair critical sized alveolar bone defects in an in vivo rabbit mandible defect model. Human dental pulp stem cells are uniquely suited for use in CMF repair in that they are derived from the neural crest, which naturally contributes to CMF development. E1001(1k)/ß-TCP scaffolds provide tunable mechanical and biodegradation properties, and are highly porous, consisting of interconnected macro- and micropores, to promote cell infiltration and attachment throughout the construct. Human dental pulp stem cells/HUVECs seeded and acellular E1001(1k)/ß-TCP constructs were implanted for one and three months, harvested and analyzed by micro-computed tomography, then demineralized, processed and sectioned for histological and immunohistochemical analyses. Our results showed that hDPSC seeded E1001(1k)/ß-TCP constructs to support the formation of osteodentin-like mineralized jawbone tissue closely resembling that of natural rabbit jaw bone. Although unseeded scaffolds supported limited alveolar bone regeneration, more robust and homogeneous bone formation was observed in hDPSC/HUVEC-seeded constructs, suggesting that hDPSCs/HUVECs contributed to enhanced bone formation. Importantly, bioengineered jaw bone recapitulated the characteristic morphology of natural rabbit jaw bone, was highly vascularized, and exhibited active remodeling by the presence of osteoblasts and osteoclasts on newly formed bone surfaces. In conclusion, these results demonstrate, for the first time, that E1001(1K)/ ß-TCP scaffolds pre-seeded with human hDPSCs and HUVECs contributed to enhanced bone formation in an in vivo rabbit mandible defect repair model as compared to acellular E1001(1K)/ß-TCP constructs. These studies demonstrate the utility of hDPSC/HUVEC-seeded E1001(1K)/ß-TCP scaffolds as a potentially superior clinically relevant therapy to repair craniomaxillofacial bone defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...