Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(2): e1011867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422161

RESUMO

Determining the general laws between evolution and development is a fundamental biological challenge. Developmental hourglasses have attracted increased attention as candidates for such laws, but the necessity of their emergence remains elusive. We conducted evolutionary simulations of developmental processes to confirm the emergence of the developmental hourglass and unveiled its establishment. We considered organisms consisting of cells containing identical gene networks that control morphogenesis and evolved them under selection pressure to induce more cell types. By computing the similarity between the spatial patterns of gene expression of two species that evolved from a common ancestor, a developmental hourglass was observed, that is, there was a correlation peak in the intermediate stage of development. The fraction of pleiotropic genes increased, whereas the variance in individuals decreased, consistent with previous experimental reports. Reduction of the unavoidable variance by initial or developmental noise, essential for survival, was achieved up to the hourglass bottleneck stage, followed by diversification in developmental processes, whose timing is controlled by the slow expression dynamics conserved among organisms sharing the hourglass. This study suggests why developmental hourglasses are observed within a certain phylogenetic range of species.


Assuntos
Família , Teoria de Sistemas , Humanos , Filogenia , Redes Reguladoras de Genes/genética , Morfogênese/genética , Evolução Biológica
2.
J Exp Zool B Mol Dev Evol ; 338(1-2): 62-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600605

RESUMO

It is acknowledged that embryonic development has a tendency to proceed from common toward specific. Ernst Haeckel raised the question of why that tendency prevailed through evolution, and the question remains unsolved. Here, we revisit Haeckel's recapitulation theory, that is, the parallelism between evolution and development through numerical evolution and dynamical systems theory. By using intracellular gene expression dynamics with cell-to-cell interaction over spatially aligned cells to represent the developmental process, gene regulation networks (GRN) that govern these dynamics evolve under the selection pressure to achieve a prescribed spatial gene expression pattern. For most numerical evolutionary experiments, the evolutionary pattern changes over generations, as well as the developmental pattern changes governed by the evolved GRN exhibit remarkable similarity. Changes in both patterns consisted of several epochs where stripes are formed in a short time, whereas for other temporal regimes, the pattern hardly changes. In evolution, these quasi-stationary generations are needed to achieve relevant mutations, whereas, in development, they are due to some gene expressions that vary slowly and control the pattern change. These successive epochal changes in development and evolution are represented as common bifurcations in dynamical systems theory, regulating working network structure from feedforward subnetwork to those containing feedback loops. The congruence is the correspondence between successive acquisitions of subnetworks through evolution and changes in working subnetworks in development. Consistency of the theory with the segmentation gene-expression dynamics is discussed. Novel outlook on recapitulation and heterochrony are provided, testable experimentally by the transcriptome and network analysis.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Animais , Retroalimentação , Redes Reguladoras de Genes , Filogenia
3.
Chaos ; 28(4): 045110, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31906628

RESUMO

Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

4.
J Exp Zool B Mol Dev Evol ; 326(1): 61-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26678220

RESUMO

Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis.


Assuntos
Evolução Biológica , Redes Reguladoras de Genes , Animais , Padronização Corporal , Simulação por Computador , Biologia do Desenvolvimento , Retroalimentação , Expressão Gênica , Morfogênese , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA