Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39122918

RESUMO

Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies. We found that naltrexone antagonizes the priming strength of fentanyl as shown by a rightward shift in its reinstatement dose-effect curve and that naltrexone surmountably antagonizes the BOLD response induced by fentanyl. However, while naltrexone also countered fentanyl's effects on NAcc FC, the effects were not surmounted by a higher dose of fentanyl. Together, these data suggest that, in contrast to naltrexone's modulation of fentanyl's effects on behavior and BOLD responses, their interactive effects on FC between multiple brain regions do not reflect their receptor-mediated activity. Additionally, we demonstrated opposing effects in the absence and presence of naltrexone on NAcc FC at baseline (i.e., in the absence of any fentanyl prime) suggesting that naltrexone alters FC at baseline, even though naltrexone appears behaviorally silent in the absence of an agonist prime. Together these data provide additional insight into ways in which naltrexone interacts with opioid agonists, both behaviorally and in the brain. Further understanding the effects of opioid agonists on patterns of FC could help elucidate our understanding of the neural processes that contribute to the initiation of and relapse to opioid-seeking behavior in OUD.

2.
Psychedelic Med (New Rochelle) ; 2(2): 96-108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39149579

RESUMO

Background: Frontline antidepressants such as selective serotonin reuptake inhibitors (SSRIs) leave many patients with unmet treatment needs. Moreover, even when SSRIs reduce depressive symptoms, anhedonia, the loss of pleasure to previously rewarding activities, often remains unabated. This state of affairs is disheartening and calls for the development of medications to more directly treat anhedonia. The atypical psychedelic 3,4-methylenedioxymethamphetamine (MDMA) might have promise as a prohedonic medication given its efficacious applications for treatment-resistant post-traumatic stress disorder and comorbid depression. However, in addition to its prosocial effects as an entactogen, MDMA is also associated with neurotoxic cognitive deficits. The present studies were designed to examine the relative potency of MDMA in female and male rats across three distinct behavioral domains to assist in defining a preclinical profile of MDMA as a candidate prohedonic therapeutic. Methods: First, signal detection metrics of reward responsivity were examined using the touchscreen probabilistic reward task (PRT), a reverse-translated assay used to objectively quantify anhedonic phenotypes in humans. Second, to probe potential cognitive deficits, touchscreen-based assays of psychomotor vigilance and delayed matching-to-position were used to examine attentional processes and short-term spatial memory, respectively. Finally, MDMA's entactogenic effects were studied via pairwise assessments of social interaction facilitated by machine-learning analyses. Results: Findings show (1) dose-dependent increases in reward responsivity as quantified by the PRT, (2) dose-dependent deficits in attention and short-term memory, and (3) dose-dependent increases in aspects of prosocial interaction in male but not female subjects. Neither the desirable (prohedonic) nor undesirable (cognition disruptive) effects of MDMA persisted beyond 24 h. Conclusions: The present results characterize MDMA as a promising prohedonic treatment, notwithstanding some liability for short-lived cognitive impairment following acute administration.

3.
Br J Pharmacol ; 181(16): 2794-2809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644533

RESUMO

BACKGROUND AND PURPOSE: Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH: Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS: TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS: This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Metanfetamina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1 , Animais , Metanfetamina/farmacologia , Metanfetamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/antagonistas & inibidores , Masculino , Camundongos , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Autoadministração , Ratos Sprague-Dawley , Estimulantes do Sistema Nervoso Central/farmacologia
4.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627065

RESUMO

Resting-state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys [n = 12 adolescents (6 male/6 female) ∼2.5 years and n = 15 adults (7 male/8 female) ∼9.5 years] were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 T scanner. Group-level independent component analysis (ICA; 30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes, were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared with adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Saimiri , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Vigília/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia
5.
Biol Psychiatry ; 96(6): 473-485, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432521

RESUMO

BACKGROUND: Abnormal reward sensitivity is a risk factor for psychiatric disorders, including eating disorders such as overeating and binge-eating disorder, but the brain structural mechanisms that underlie it are not completely understood. Here, we sought to investigate the relationship between multimodal whole-brain structural features and reward sensitivity in nonhuman primates. METHODS: Reward sensitivity was evaluated through behavioral economic analysis in which monkeys (adult rhesus macaques; 7 female, 5 male) responded for sweetened condensed milk (10%, 30%, 56%), Gatorade, or water using an operant procedure in which the response requirement increased incrementally across sessions (i.e., fixed ratio 1, 3, 10). Animals were divided into high (n = 6) or low (n = 6) reward sensitivity groups based on essential value for 30% milk. Multimodal magnetic resonance imaging was used to measure gray matter volume and white matter microstructure. Brain structural features were compared between groups, and their correlations with reward sensitivity for various stimuli was investigated. RESULTS: Animals in the high sensitivity group had greater dorsolateral prefrontal cortex, centromedial amygdaloid complex, and middle cingulate cortex volumes than animals in the low sensitivity group. Furthermore, compared with monkeys in the low sensitivity group, high sensitivity monkeys had lower fractional anisotropy in the left dorsal cingulate bundle connecting the centromedial amygdaloid complex and middle cingulate cortex to the dorsolateral prefrontal cortex, and in the left superior longitudinal fasciculus 1 connecting the middle cingulate cortex to the dorsolateral prefrontal cortex. CONCLUSIONS: These results suggest that neuroanatomical variation in prefrontal-limbic circuitry is associated with reward sensitivity. These brain structural features may serve as predictive biomarkers for vulnerability to food-based and other reward-related disorders.


Assuntos
Macaca mulatta , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Recompensa , Animais , Masculino , Feminino , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/fisiologia , Substância Branca/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Condicionamento Operante/fisiologia
6.
Nat Commun ; 15(1): 878, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296993

RESUMO

In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.


Assuntos
Corpo Estriado , Transtornos Relacionados ao Uso de Opioides , Masculino , Animais , Humanos , Feminino , Macaca mulatta , Corpo Estriado/metabolismo , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Perfilação da Expressão Gênica
7.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711610

RESUMO

The use of non-drug alternative reinforcers has long been utilized as a component of therapeutic interventions for the management of substance use disorder; however, the conditions under which alternative reinforcers are most effective are not well characterized. This study evaluated the impact of varying the magnitude of an alternative reinforcer on oxycodone self-administration and reinstatement in male and female squirrel monkeys. Subjects (n=4/sex) were trained under concurrent second-order schedules of reinforcement for intravenous oxycodone (0.001-0.1mg/kg/inj) on one lever, and sweetened condensed milk (5, 10, 20, 30% in water) on another. Oxycodone-primed reinstatement was evaluated by administering 0.32mg/kg oxycodone prior to sessions in which saline was available on the drug-paired lever. During oxycodone self-administration sessions, milk availability decreased oxycodone self-administration and preference in a concentration-dependent manner; low milk concentrations were more effective at decreasing oxycodone’s reinforcing potency in males. During reinstatement tests, milk significantly attenuated oxycodone-primed responding in both males and females; low milk concentrations were more effective at decreasing the priming effects of oxycodone in females. That alternative reinforcers differentially impacted self-administration and reinstatement in a sex-dependent manner suggests that treatment strategies that utilize alternative reinforcers may be more effective in males or females depending on when they are implemented.

8.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711620

RESUMO

Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys ( n =12 adolescents [6 male/6 female] ∼2.5 years and n =15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (IC) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward (e.g., basal ganglia), and cognitive processes were identified in both adolescent and adult monkeys. Significant age-related differences between the adult and adolescent subjects (adult > adolescent) were found in two networks of interest: (1) the right upper occipital region with an OFC IC and (2) the left temporal cortex, bilateral visual areas, and cerebellum with the cingulate IC. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood. Significance Statement: Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.

9.
Front Neurosci ; 16: 998351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248648

RESUMO

Aim: There is increasing concern that cannabinoid exposure during adolescence may disturb brain maturation and produce long-term cognitive deficits. However, studies in human subjects have provided limited evidence for such causality. The present study utilized behavioral and neuroimaging endpoints in female non-human primates to examine the effects of acute and chronic exposure during adolescence to the cannabinoid receptor full agonist, AM2389, on cognitive processing and brain function and chemistry. Materials and methods: Adolescent female rhesus macaques were trained on a titrating-delay matching-to-sample (TDMTS) touchscreen task that assays working memory. TDMTS performance was assessed before and during chronic exposure to AM2389, following antagonist (rimonabant) administration, and after discontinuation of the chronic regimen. Resting-state fMRI connectivity and magnetic resonance spectroscopy data were acquired prior to drug treatment, during chronic exposure, and following its discontinuation. Voxels were placed in the medial orbitofrontal cortex (mOFC), a region involved in memory processing that undergoes maturation during adolescence. Results: TDMTS performance was dose-dependently disrupted by acute AM2389; however, chronic treatment resulted in tolerance to these effects. TDMTS performance also was disrupted by discontinuation of the chronic regimen but surprisingly, not by rimonabant administration during chronic AM2389 treatment. mOFC N-acetylaspartate/creatine ratio decreased after acute and chronic administration but returned to baseline values following discontinuation of chronic treatment. Finally, intra-network functional connectivity (mOFC) increased during the chronic regimen and returned to baseline values following its discontinuation. Conclusion: Neural effects of a cannabinergic drug may persist during chronic exposure, notwithstanding the development of tolerance to behavioral effects. However, such effects dissipate upon discontinuation, reflecting the restorative capacity of affected brain processes.

10.
Brain Imaging Behav ; 16(4): 1684-1694, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35226333

RESUMO

Functional magnetic resonance imaging (fMRI) has been used to study the influence of opioids on neural circuitry implicated in opioid use disorder, such as the cortico-striatal-thalamo-cortical (CSTC) circuit. Given the increase in fentanyl-related deaths, this study was conducted to characterize the effects of fentanyl on patterns of brain activation in awake nonhuman primates. Four squirrel monkeys were acclimated to awake scanning procedures conducted at 9.4 Tesla. Subsequently, test sessions were conducted in which a dose of fentanyl that reliably maintains intravenous (IV) self-administration behavior in monkeys, 1 µg/kg, was administered and the effects on patterns of brain activity were assessed using: (1) a pharmacological regressor to elucidate fentanyl-induced patterns of neural activity, and (2) seed-based approaches targeting bilateral anterior cingulate, thalamus, or nucleus accumbens (NAc) to determine alterations in CSTC functional connectivity. Results showed a functional inhibition of BOLD signal in brain regions that mediate behavioral effects of opioid agonists, such as cingulate cortex, striatum and midbrain. Functional connectivity between each of the seed regions and areas involved in motoric, sensory and cognition-related behavior generally decreased. In contrast, NAc functional connectivity with other striatal regions increased. These results indicate that fentanyl produces changes within CSTC circuitry that may reflect key features of opioid use disorder (e.g. persistent drug-taking/seeking) and thereby contribute to long-term disruptions in behavior and addiction. They also indicate that fMRI in alert nonhuman primates can detect drug-induced changes in neural circuits and, in turn, may be useful for investigating the effectiveness of medications to reverse drug-induced dysregulation.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Vigília , Animais , Encéfalo/patologia , Fentanila/farmacologia , Imageamento por Ressonância Magnética , Vias Neurais , Transtornos Relacionados ao Uso de Opioides/patologia , Primatas
11.
Br J Pharmacol ; 179(11): 2610-2630, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34837227

RESUMO

BACKGROUND AND PURPOSE: The 5-HT receptor subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and H1 receptors is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C receptors for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH: We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta-position. Affinity, function, molecular modeling and 5-HT2A receptor mutagenesis studies were performed to understand structure-activity relationships at 5-HT2 -type and H1 receptors. Lead 4-PAT-type 5-HT2A /5-HT2C receptor inverse agonists were compared with pimavanserin, a selective 5-HT2A /5-HT2C receptor inverse agonist approved to treat Parkinson's disease-related psychosis, in the mouse head twitch response and locomotor activity assays, models relevant to antipsychotic drug development. KEY RESULTS: Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C and H1 receptors, with >100-fold selectivity over 5-HT2B receptors, whereas diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C receptors and had >100-fold selectivity over 5-HT2B and H1 receptors. Results suggest that G2385.42 and V2355.39 in 5-HT2A receptors (conserved in 5-HT2C receptors) are important for high affinity binding, whereas interactions with T1945.42 and W1584.56 determine H1 receptor affinity. The 4-PAT analog (2S,4R)-4-(4'-(dimethylamino)-[1,1'-biphenyl]-3-yl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C receptor inverse agonist, had activity like pimavanserin in the mouse head twitch response assay but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS: The novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C receptor inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. Chirality can be exploited to attain selectivity over H1 receptors, which may circumvent sedative effects.


Assuntos
Antipsicóticos , Serotonina , Animais , Camundongos , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tetra-Hidronaftalenos/farmacologia
12.
Front Neuroimaging ; 1: 1031991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555145

RESUMO

Aim: Resting-state fMRI (rs-fMRI) is often used to infer regional brain interactions from the degree of temporal correlation between spontaneous low-frequency fluctuations, thought to reflect local changes in the BOLD signal due to neuronal activity. One complication in the analysis and interpretation of rs-fMRI data is the existence of non-neuronal low frequency physiological noise (systemic low frequency oscillations; sLFOs) which occurs within the same low frequency band as the signal used to compute functional connectivity. Here, we demonstrate the use of a time lag mapping technique to estimate and mitigate the effects of the sLFO signal on resting state functional connectivity of awake squirrel monkeys. Methods: Twelve squirrel monkeys (6 male/6 female) were acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Rs-fMRI data was preprocessed using an in-house pipeline and sLFOs were detected using a seed regressor generated by averaging BOLD signal across all voxels in the brain, which was then refined recursively within a time window of -16-12 s. The refined regressor was then used to estimate the voxel-wise sLFOs; these regressors were subsequently included in the general linear model to remove these moving hemodynamic components from the rs-fMRI data using general linear model filtering. Group level independent component analysis (ICA) with dual regression was used to detect resting-state networks and compare networks before and after sLFO denoising. Results: Results show sLFOs constitute ~64% of the low frequency fMRI signal in squirrel monkey gray matter; they arrive earlier in regions in proximity to the middle cerebral arteries (e.g., somatosensory cortex) and later in regions close to draining vessels (e.g., cerebellum). Dual regression results showed that the physiological noise was significantly reduced after removing sLFOs and the extent of reduction was determined by the brain region contained in the resting-state network. Conclusion: These results highlight the need to estimate and remove sLFOs from fMRI data before further analysis.

13.
J Pharmacol Exp Ther ; 378(2): 124-132, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33986037

RESUMO

Monoamine releasers such as d-methamphetamine (d-MA) can reduce cocaine use in laboratory studies and have been forwarded for the management of cocaine use disorder (CUD). However, the proven abuse liability of d-MA has limited enthusiasm for clinical use. The levorotatory isomer of MA, l-MA, appears to have lesser stimulant effects, possibly due to its preferential norepinephrine-releasing properties compared with dopamine. The present study evaluated the abuse potential of l-MA by comparing its reinforcing effects with known stimulant drugs of abuse in nonhuman primates. Adult rhesus macaques (N = 4) responded for intravenous injections of cocaine, d-MA, methcathinone (MCAT), or l-MA under a fixed-ratio (FR) schedule of reinforcement; reinforcing effectiveness was evaluated using behavioral economic demand procedures. In a separate cohort (N = 9), daily activity and food-reinforced responding were assessed during 100 days of treatment with daily dosages of l-MA (2.3 mg/kg per day, i.v.) or d-MA (0.74 mg/kg per day, i.v.) previously shown to decrease cocaine self-administration. Results show that all drugs maintained self-administration, with peak injections reaching ∼100 inj per session for cocaine, MCAT, and d-MA and ∼50 inj per session for l-MA . In demand studies, self-administration of each drug gradually decreased as FR size increased. The exponential model of demand indicated that the reinforcing effectiveness of l-MA was significantly less than the other drugs studied. Chronic l-MA treatment did not appreciably alter daily activity and only transiently suppressed food-reinforced responding. These data, coupled with previous findings that l-MA effectively reduces stimulant self-administration, suggest that l-MA, or other norepinephrine-preferring releasers, may serve as agonist medication for CUD with lesser abuse liability than common psychostimulants. SIGNIFICANCE STATEMENT: Development of pharmacotherapies for cocaine use disorder remains a formidable challenge. Agonist-based therapies show promise, but enthusiasm is tempered by the abuse liability of previously proposed medications. This study evaluated the abuse liability and chronic treatment effects of methamphetamine's levorotatory isomer (l-MA). l-MA demonstrated lower abuse liability compared with commonly abused stimulants and produced few untoward effects. In the context of recent studies demonstrating that l-MA attenuates stimulant self-administration, these findings support l-MA's potential as a pharmacotherapy for stimulant addiction.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Reforço Psicológico
14.
Int J Neuropsychopharmacol ; 24(8): 656-665, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33909067

RESUMO

BACKGROUND: Synthetic cathinones display overlapping behavioral effects with psychostimulants (e.g., methamphetamine [MA]) and/or entactogens (e.g., 3,4-methylenedioxymethaphetamine [MDMA])-presumably reflecting their dopaminergic and/or serotonergic activity. The discriminative stimulus effects of MDMA thought to be mediated by such activity have been well characterized in rodents but have not been fully examined in nonhuman primates. METHODS: The present studies were conducted to systematically evaluate the discriminative stimulus effects of 5 abused synthetic cathinones (methylenedioxypyrovalerone [MDPV], α-pyrrolidinovalerophenone [α-PVP], methcathinone [MCAT], mephedrone, and methylone) in adult male squirrel monkeys trained to distinguish intramuscular injections of MA (0.1 mg/kg; n = 4) or MDMA (0.6 mg/kg; n = 4) from vehicle. RESULTS: Each training drug produced dose-dependent effects and, at the highest dose, full substitution. MDMA produced predominantly vehicle-like responding in the MA-trained group, whereas the highest dose of MA (0.56 mg/kg) produced partial substitution (approximately 90% appropriate lever responding in one-half of the subjects) in the MDMA-trained group. MDPV, α-PVP, and MCAT produced full substitution in MA-trained subjects, but, at the same or higher doses, only substituted for MDMA in one-half of the subjects, consistent with primarily dopaminergically mediated interoceptive effects. In contrast, mephedrone and methylone fully substituted in MDMA-trained subjects but failed to fully substitute for the training drug in MA-trained subjects, suggesting a primary role for serotonergic actions in their interoceptive effects. CONCLUSIONS: These findings suggest that differences in the interoceptive effects of synthetic cathinones in nonhuman primates reflect differing compositions of monoaminergic actions that also may mediate their subjective effects in humans.


Assuntos
Alcaloides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Interocepção/efeitos dos fármacos , Metanfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Psicotrópicos/farmacologia , Alcaloides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Masculino , Metanfetamina/administração & dosagem , Metanfetamina/análogos & derivados , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Propiofenonas/farmacologia , Psicotrópicos/administração & dosagem , Pirrolidinas/farmacologia , Saimiri , Catinona Sintética
15.
Pharmacol Biochem Behav ; 202: 173112, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444603

RESUMO

The abuse of synthetic cathinones ("bath salts") with psychomotor stimulant and/or entactogenic properties emerged as a public health concern when they were introduced as "legal" alternatives to drugs of abuse such as cocaine or MDMA. In this study, experiments were conducted in nonhuman primates to examine how differences in transporter selectivity might impact the reinforcing effects of synthetic cathinones. Rhesus monkeys (N = 5) were trained to respond for intravenous injections under a fixed-ratio (FR) 30, timeout 60-s schedule of reinforcement. The reinforcing effects of selected cathinones (e.g., MDPV, αPVP, MCAT, and methylone) with a range of pharmacological effects at dopamine and serotonin transporters were compared to cocaine and MDMA using dose-response analysis under a simple FR schedule and behavioral economic procedures that generated demand curves for two doses of each drug. Results show that one or more doses of all drugs were readily self-administered in each subject and, excepting MDMA (21 injections/session), peak levels of self-administration were similar across drugs (between 30 and 40 injections/session). Demand elasticity for the peak and the peak + 1/2-log dose of each drug did not significantly differ, and when data for the two doses were averaged for each drug, the following rank-order of reinforcing strength emerged: cocaine > MCAT = MDPV = methylone > αPVP = MDMA. These results indicate that the reinforcing strength of synthetic cathinones are not related to their selectivity in binding dopamine or serotonin transporter sites.


Assuntos
Alcaloides/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Reforço Psicológico , Medicamentos Sintéticos/administração & dosagem , Alcaloides/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/administração & dosagem , Benzodioxóis/metabolismo , Estimulantes do Sistema Nervoso Central/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Macaca mulatta , Masculino , Metanfetamina/administração & dosagem , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Pentanonas/administração & dosagem , Ligação Proteica , Pirrolidinas/administração & dosagem , Pirrolidinas/metabolismo , Autoadministração , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Medicamentos Sintéticos/metabolismo , Catinona Sintética
16.
Pharmacol Biochem Behav ; 200: 173090, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333132

RESUMO

Over 200 in vivo magnetic resonance spectroscopy (MRS) studies of substance use and related disorders (SUD) were published this past decade. The large majority of this work used proton (1H)-MRS to characterize effects of acute and chronic exposures to drugs of abuse on human brain metabolites including N-acetylaspartate, choline-containing metabolites, creatine plus phosphocreatine, glutamate, and GABA. Some studies used phosphorus (31P)-MRS to quantify biomarkers of cerebral metabolism including phosphocreatine and adenosine triphosphate. A few studies used carbon (13C)-MRS to quantify intermediary metabolism. This Mini-review discusses select studies that illustrate how MRS can complement neurocircuitry research including by use of multimodal imaging strategies that combine MRS with functional MRI (fMRI) and/or diffusion tensor imaging (DTI). Additionally, magnetic resonance spectroscopic imaging (MRSI), which enables simultaneous multivoxel MRS acquisitions, can be used to better understand and interpret whole-brain functional or structural connectivity data. The review discusses some limitations in MRS methodology and then highlights important knowledge gaps and areas for potential future investigation, including the use of 1H- and 31P-MRS to quantify cerebral metabolism, oxidative stress, inflammation, and brain temperature, all of which are associated with SUD and all of which can influence neurocircuitry and behavior.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Imagem de Tensor de Difusão/métodos , Ácido Glutâmico/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Fosfocreatina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Ácido gama-Aminobutírico/metabolismo
17.
Transl Psychiatry ; 10(1): 420, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268770

RESUMO

Long-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen-two brain regions involved in cognitive function and motoric behavior-identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299-424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


Assuntos
Cocaína , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Giro do Cíngulo , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Primatas
18.
Exp Clin Psychopharmacol ; 28(5): 517-526, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31789555

RESUMO

Chronic health problems associated with long-term nicotine use are the leading cause of preventable death in the United States. The use of tobacco products is 3-4 times greater among individuals with cocaine use disorder than that observed in the general population. This may reflect the propensity of nicotine to augment the reinforcing effects of cocaine. However, the mechanism of action of nicotine differs from that of cocaine, which presents a significant challenge for the development of pharmacotherapeutic interventions for the management of nicotine + cocaine polydrug abuse. Bupropion, an FDA-approved smoking cessation aid, has pharmacological actions at both monoamine transporters and nicotinic receptors, suggesting that it may be effective at decreasing nicotine + cocaine coabuse. Here, rhesus monkeys (n = 4) responded for food pellets and, separately, intravenous injections of nicotine, cocaine, or nicotine + cocaine mixtures under a second-order FR2(VR16:S) schedule of reinforcement during 7- to 10-day continuous treatment with saline or bupropion (1.0 and 1.8 mg/kg/hr). Results show that bupropion treatment dose-dependently decreased self-administration of nicotine combined with a low dose of cocaine (0.0032 mg/kg/inj); however, when the dose of cocaine in the mixture was higher (i.e., 0.01 mg/kg/inj), bupropion attenuated self-administration in only a subset of subjects. The effective dosage of bupropion increased responding for cocaine alone, nicotine alone, and for saline injections and significantly increased measures of daily activity. The apparent stimulant-like effects of bupropion at the dosage required to decrease cocaine + nicotine self-administration does not support its clinical use for the management of nicotine + cocaine polydrug abuse. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Bupropiona/administração & dosagem , Cocaína/administração & dosagem , Macaca mulatta/fisiologia , Nicotina/administração & dosagem , Agentes de Cessação do Hábito de Fumar/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , Reforço Psicológico , Autoadministração
19.
Adv Pharmacol ; 86: 197-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31378252

RESUMO

Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).


Assuntos
Alimentos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Comportamento Aditivo/tratamento farmacológico , Encéfalo/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Neurotransmissores/metabolismo
20.
Psychopharmacology (Berl) ; 236(7): 2143-2153, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30877326

RESUMO

RATIONALE: Cocaine use disorder (CUD) is associated with cognitive deficits that have been linked to poor treatment outcomes. An improved understanding of cocaine's deleterious effects on cognition may help optimize pharmacotherapies. Emerging evidence implicates abnormalities in glutamate neurotransmission in CUD and drugs that normalize glutamatergic homeostasis (e.g., N-acetylcysteine [NAC]) may attenuate CUD-related relapse behavior. OBJECTIVES: The present studies examined the impact of chronic cocaine exposure on touchscreen-based models of learning (repeated acquisition) and cognitive flexibility (discrimination reversal) and, also, the ability of NAC to modulate cocaine self-administration and its capacity to reinstate drug-seeking behavior. METHODS: First, stable repeated acquisition and discrimination reversal performance was established. Next, high levels of cocaine-taking behavior (2.13-3.03 mg/kg/session) were maintained for 150 sessions during which repeated acquisition and discrimination reversal performance was probed periodically. Finally, the effects of NAC treatment were examined on cocaine self-administration and, subsequently, extinction and reinstatement. RESULTS: Cocaine self-administration significantly impaired performance under both cognitive tasks; however, discrimination reversal was disrupted considerably more than acquisition. Performance eventually approximated baseline levels during chronic exposure. NAC treatment did not perturb ongoing self-administration behavior but was associated with significantly quicker extinction of drug-lever responding. Cocaine-primed reinstatement did not significantly differ between groups. CONCLUSIONS: The disruptive effects of cocaine on learning and cognitive flexibility are profound but performance recovered during chronic exposure. Although the effects of NAC on models of drug-taking and drug-seeking behavior in monkeys are less robust than reported in rodents, they nevertheless suggest a role for glutamatergic modulators in CUD treatment programs.


Assuntos
Acetilcisteína/administração & dosagem , Cocaína/administração & dosagem , Cognição/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Reforço Psicológico , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cognição/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Aprendizagem por Discriminação/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Sequestradores de Radicais Livres/administração & dosagem , Masculino , Estimulação Luminosa/métodos , Primatas , Saimiri , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA