Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747199

RESUMO

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Assuntos
Tempestades Ciclônicas , Florestas , Árvores , Clima Tropical , Vento , Árvores/crescimento & desenvolvimento , Teorema de Bayes
2.
Nat Commun ; 14(1): 1113, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914632

RESUMO

Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.


Assuntos
Florestas , Árvores , Humanos , Biomassa , Madeira , Ásia Oriental , Clima Tropical
3.
J Plant Res ; 133(2): 217-229, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016652

RESUMO

Stone oaks, or Lithocarpus species of Fagaceae are ecologically important canopy trees in the tropical and subtropical forests over East Asia, and the fruits of which are important food sources for insects and vertebrates there. The great fruit morphological variation of this genus represents two fruit types, acorn and enclosed receptacle fruit types. However, the evolutionary mechanisms of differentiation into these two fruit types with contrasting morphology remain a puzzle. To reveal the morphogenetic properties of two fruit types, we observed tissue differentiation and development among 20 Lithocarpus species from fruit set to maturity. Unlike in fruits of Quercus, the endocarp differentiation in Lithocarpus fruits occurred later than exocarp and mesocarp. Cupules provided further protection of developing seeds, particularly of acorn-type fruits. Fruits of Lithocarpus and Quercus acorns share similar insect predators. At fruit set, both acorn and enclosed receptacle types were largely identical, with similar tissue morphology and the sequence of differentiation. The distinct difference between two fruit types at maturity came from varied rates and degrees of development between the pericarp and receptacle tissues. We found that heterochrony between two tissues could create substantially divergent ecological strategies for protection and dispersal of their seeds, which is essential for the evolution of two fruit types.


Assuntos
Fagaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Animais , Evolução Biológica , Ásia Oriental , Florestas , Quercus
4.
PLoS One ; 13(8): e0202461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30106988

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0199538.].

5.
PLoS One ; 13(6): e0199538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944688

RESUMO

Two fruit types can be distinguished among stone oaks (Lithocarpus) species: the 'acorn' (AC) and the 'enclosed receptacle' (ER) types. Our morphometric analysis of 595 nuts from 98 species (one third of all Lithocarpus spp.) found substantial transition in mechanical protection of the seed between two woody fruit tissues (exocarp and receptacle) of two fruit types. AC fruits were smaller in seed and fruit size and the thin brittle exocarp largely enclosed the seed, whereas ER fruits were larger and the seed was mostly enclosed by thick woody receptacle tissue. The differences in these two tissues were considerably greater between compared to within fruit type and species. Geospatial distribution showed that seed size of all examined species increased with elevation and decreased with latitude, the physical defense increased with both elevation and latitude, and ER-fruit species were more common at higher elevation. The two fruit types represent distinct suites of associated traits that respond differently to the various biotic and abiotic factors associated with geographic variation, profoundly impacting the evolution of the two fruit types. The co-occurrence of two fruit types in the same forest could be a consequence of distinct fruit and animal interactions.


Assuntos
Fagaceae/anatomia & histologia , Fagaceae/genética , Frutas/anatomia & histologia , Frutas/genética , Altitude , Evolução Biológica , Florestas , Análise Espacial , Especificidade da Espécie
6.
Oecologia ; 182(2): 373-83, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27262582

RESUMO

Functional traits of light-exposed leaves have been reported to show tree height-dependent change. However, it remains unknown how plastic response of leaf traits to tree height is linked with shoot-level carbon gain. To answer this question, we examined the photosynthetic properties of fully lit current-year shoots in crown tops with various heights for seven deciduous broad-leaved species dominated in a cool-temperate forest in northern Japan. We measured leaf mass, stomatal conductance, nitrogen content, light-saturated net photosynthetic rate (all per leaf lamina area), foliar stable carbon isotope ratio, and shoot mass allocation to leaf laminae. We employed hierarchical Bayesian models to simultaneously quantify inter-trait relationships for all species. We found that leaf and shoot traits were co-varied in association with height, and that there was no quantitative inter-specific difference in leaf- and shoot-level plastic responses to height. Nitrogen content increased and stomatal conductance decreased with height. Reflecting these antagonistic responses to height, photosynthetic rate was almost unchanged with height. Photosynthetic rate divided by stomatal conductance as a proxy of photosynthetic water use efficiency sufficiently explained the variation of foliar carbon isotope ratio. The increase in mass allocation to leaves in a shoot compensated for the height-dependent decline in photosynthetic rate per leaf lamina mass. Consequently, photosynthetic gain at the scale of current-year shoot mass was kept unchanged with tree height. We suggest that the convergent responses of shoot functional traits across species reflect common requirements for trees coexisting in a forest.


Assuntos
Teorema de Bayes , Fotossíntese , Luz , Nitrogênio , Folhas de Planta , Árvores
7.
Am Nat ; 185(3): 367-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25674691

RESUMO

Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory.


Assuntos
Luz , Árvores/crescimento & desenvolvimento , Clima Tropical , Teorema de Bayes , Demografia , Ecossistema , Florestas , Longevidade , Malásia
8.
Ecology ; 95(2): 353-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24669729

RESUMO

Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature, wood density, and capacity for horizontal crown expansion. The enhancement of a demographic trade-off due to interspecific variation in functional traits in the understory helps to explain species coexistence in diverse rain forests.


Assuntos
Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Clima Tropical , Longevidade , Especificidade da Espécie
9.
Biol Rev Camb Philos Soc ; 88(3): 701-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23506298

RESUMO

For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree species needing canopy gaps for establishment reflects the frequency and/or extent of canopy disturbance by wind, landslide, volcanic eruptions (lava flow and ash fall), flood or fire. We used standard floras and ecological accounts to draw up lists of core tree species commonly reaching 5 m height. We excluded species which are very rare, very localized in distribution, or confined to special habitats, e.g. coastal forests or rocky sites. We used published accounts and our own experience to classify species into three groups: (1) needing canopy gaps for establishment; (2) needing either light shade throughout or a canopy gap relatively soon (a few months or years) after establishment; and (3) variously more shade-tolerant. Group 1 species were divided according the kind of canopy opening needed: tree-fall gap, landslide, lava flow, flood or fire. Only some of the significant differences in proportion of Group 1 species were consistent with differences in the extent of disturbance; even in some of those cases other factors seem likely to have had a major determining influence during evolution. We also sought to determine whether the species that are at least 'short-term persistent' in the soil seed bank (lasting 2-4 years) are all species needing canopy gaps for establishment. The answer was negative; large numbers of seeds of some shade-tolerants accumulate in the soil, and these species are able to benefit from soil disturbance in deep shade. We found a significant and strong positive relationship in Japan between mean seed mass and mature tree height, a weak positive relationship in New Zealand and no relationship in any of the other four regions. When comparing the seed mass values of Group 1 and Group 3 species we obtained different answers depending on whether or not we confined ourselves to taxonomically controlled contrasts. In only two of the four regions with an appreciable number of species in Group 1 is the mean seed mass of such species significantly lower than that of Group 3 species when taxonomic relatedness is ignored.


Assuntos
Ecossistema , Sementes/fisiologia , Árvores/classificação , Árvores/fisiologia , Clima , Temperatura
10.
Ann Bot ; 108(7): 1279-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21914698

RESUMO

BACKGROUND AND AIMS: Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. METHODS: Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. KEY RESULTS: Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. CONCLUSIONS: In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain.


Assuntos
Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Japão , Luz , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...