Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(7): 110295, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055945

RESUMO

Long-term lifestyle interventions in childhood and adolescence can significantly improve cardiometabolic health, but the underlying molecular mechanisms remain poorly understood. To address this knowledge gap, we conducted an 8-year diet and physical activity intervention in a general population of children. The research revealed that the intervention influenced 80 serum metabolites over two years, with 17 metabolites continuing to be affected after eight years. The intervention primarily impacted fatty amides, including palmitic amide, linoleamide, oleamide, and others, as well as unsaturated fatty acids, acylcarnitines, phospholipids, sterols, gut microbiota-derived metabolites, amino acids, and purine metabolites. Particularly noteworthy were the pronounced changes in serum fatty amides. These serum metabolite alterations could represent molecular mechanisms responsible for the observed benefits of long-term lifestyle interventions on cardiometabolic and overall health since childhood. Understanding these metabolic changes may provide valuable insights into the prevention of cardiometabolic and other non-communicable diseases since childhood.

2.
J Agric Food Chem ; 72(29): 16461-16474, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984670

RESUMO

Coffee is a widely consumed beverage rich in bioactive phytochemicals. This study investigated the effect of brewing method on the profile of potential bioactive compounds in different coffee beverages using metabolomics and lipidomics based on UHPLC-MS/QTOF. The oil contents of the espresso coffee (EC), pot coffee (PC), instant coffee (IC), and filter coffee (FC) beverages studied were 0.13% ± 0.002, 0.12% ± 0.001, 0.04% ± 0.002, and 0.03% ± 0.003, respectively. Univariate analysis indicated significant differences (P < 0.001) in oil content when EC and PC beverages were compared with IC and FC beverages. Principal component analysis revealed similarities in the lipid profiles of FC and EC beverages and the hydrophilic profiles of PC and FC beverages. The EC beverage had the highest intensity of hydrophilic compounds such as adenine, theobromine, chlorogenic acid, and caffeine. The PC beverage was the most abundant in triglycerides, phosphatidylcholine, and diterpenes. Cafestol and kahweol esters, but not their free forms, were the most abundant diterpenes in the PC beverage. This work provides information on the differences in the profile of potentially bioactive compounds in four commonly consumed coffee beverage types and, thus, on the possible differences in the health effects of these coffee beverage types.


Assuntos
Coffea , Café , Interações Hidrofóbicas e Hidrofílicas , Café/química , Coffea/química , Coffea/metabolismo , Cromatografia Líquida de Alta Pressão , Cafeína/análise , Cafeína/metabolismo , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo , Triglicerídeos/análise , Ácido Clorogênico/análise , Ácido Clorogênico/metabolismo
3.
Diabetologia ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083240

RESUMO

AIMS/HYPOTHESIS: It is not known whether the early-pregnancy metabolome differs in patients with early- vs late-onset gestational diabetes mellitus (GDM) stratified by maternal overweight. The aims of this study were to analyse correlations between early-pregnancy metabolites and maternal glycaemic and anthropometric characteristics, and to identify early-pregnancy metabolomic alterations that characterise lean women (BMI <25 kg/m2) and women with overweight (BMI ≥25 kg/m2) with early-onset GDM (E-GDM) or late-onset GDM (L-GDM). METHODS: We performed a nested case-control study within the population-based prospective Early Diagnosis of Diabetes in Pregnancy cohort, comprising 210 participants with GDM (126 early-onset, 84 late-onset) and 209 normoglycaemic control participants matched according to maternal age, BMI class and primiparity. Maternal weight, height and waist circumference were measured at 8-14 weeks' gestation. A 2 h 75 g OGTT was performed at 12-16 weeks' gestation (OGTT1), and women with normal results underwent repeat testing at 24-28 weeks' gestation (OGTT2). Comprehensive metabolomic profiling of fasting serum samples, collected at OGTT1, was performed by untargeted ultra-HPLC-MS. Linear models were applied to study correlations between early-pregnancy metabolites and maternal glucose concentrations during OGTT1, fasting insulin, HOMA-IR, BMI and waist circumference. Early-pregnancy metabolomic features for GDM subtypes (participants stratified by maternal overweight and gestational timepoint at GDM onset) were studied using linear and multivariate models. The false discovery rate was controlled using the Benjamini-Hochberg method. RESULTS: In the total cohort (n=419), the clearest correlation patterns were observed between (1) maternal glucose concentrations and long-chain fatty acids and medium- and long-chain acylcarnitines; (2) maternal BMI and/or waist circumference and long-chain fatty acids, medium- and long-chain acylcarnitines, phospholipids, and aromatic and branched-chain amino acids; and (3) HOMA-IR and/or fasting insulin and L-tyrosine, certain long-chain fatty acids and phospholipids (q<0.001). Univariate analyses of GDM subtypes revealed significant differences (q<0.05) for seven non-glucose metabolites only in overweight women with E-GDM compared with control participants: linolenic acid, oleic acid, docosapentaenoic acid, docosatetraenoic acid and lysophosphatidylcholine 20:4/0:0 abundances were higher, whereas levels of specific phosphatidylcholines (P-16:0/18:2 and 15:0/18:2) were lower. However, multivariate analyses exploring the early-pregnancy metabolome of GDM subtypes showed differential clustering of acylcarnitines and long-chain fatty acids between normal-weight and overweight women with E- and L-GDM. CONCLUSIONS/INTERPRETATION: GDM subtypes show distinct early-pregnancy metabolomic features that correlate with maternal glycaemic and anthropometric characteristics. The patterns identified suggest early-pregnancy disturbances of maternal lipid metabolism, with most alterations observed in overweight women with E-GDM. Our findings highlight the importance of maternal adiposity as the primary target for prevention and treatment.

4.
NPJ Sci Food ; 8(1): 8, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291073

RESUMO

Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC-QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.

5.
Curr Opin Chem Biol ; 77: 102400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804582

RESUMO

Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.


Assuntos
Microbioma Gastrointestinal , Microbiota , Metabolômica/métodos , Dieta , Estado Nutricional
6.
BMC Biol ; 21(1): 207, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794486

RESUMO

BACKGROUND: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS: The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.


Assuntos
Intestinos , Microbiota , Gravidez , Masculino , Feminino , Animais , Camundongos , Placenta/metabolismo , Encéfalo/metabolismo , Feto/metabolismo
8.
J Nutr Biochem ; 115: 109307, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868506

RESUMO

Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos/genética , Inflamação/metabolismo , Lipídeos , Expressão Gênica
9.
Sci Rep ; 12(1): 15018, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056162

RESUMO

The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Mamíferos , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL
10.
Mol Nutr Food Res ; 66(21): e2101096, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35960594

RESUMO

SCOPE: Fermentation improves many food characteristics using microbes, such as lactic acid bacteria (LAB). Recent studies suggest fermentation may also enhance the health properties, but mechanistic evidence is lacking. The study aims to identify a metabolite pattern reproducibly produced during sourdough and in vitro colonic fermentation of various whole-grain rye products and how it affects the growth of bacterial species of potential importance to health and disease. METHODS AND RESULTS: The study uses Lactiplantibacillus plantarum DSMZ 13890 strain, previously shown to favor rye as its substrate. Using LC-MS metabolomics, the study finds seven microbial metabolites commonly produced during the fermentations, including dihydroferulic acid, dihydrocaffeic acid, and five amino acid metabolites, and stronger inhibition is achieved when exposing the bacteria to a mixture of the metabolites in vitro compared to individual compound exposures. CONCLUSION: The study suggests that metabolites produced by LAB may synergistically modulate the local microbial ecology, such as in the gut. This could provide new hypotheses on how fermented foods influence human health via diet-microbiota interactions.


Assuntos
Alimentos Fermentados , Lactobacillales , Humanos , Secale/química , Pão/análise , Pão/microbiologia , Fermentação , Triticum/química , Lactobacillaceae , Microbiologia de Alimentos
11.
Gut Microbes ; 14(1): 2102878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903003

RESUMO

Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aß Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA É£-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Peptídeos beta-Amiloides/metabolismo , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos
12.
Trends Endocrinol Metab ; 33(7): 463-480, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508517

RESUMO

5-Aminovaleric acid betaine (5-AVAB) is a trimethylated compound associated with the gut microbiota, potentially produced endogenously, and related to the dietary intake of certain foods such as whole grains. 5-AVAB accumulates within the metabolically active tissues and has been typically found in higher concentrations in the heart, muscle, and brown adipose tissue. Furthermore, 5-AVAB has been associated with positive health effects such as fetal brain development, insulin secretion, and reduced cancer risk. However, it also has been linked with some negative health outcomes such as cardiovascular disease and fatty liver disease. At the cellular level, 5-AVAB can influence cellular energy metabolism by reducing ß-oxidation of fatty acids. This review will focus on the metabolic role of 5-AVAB with respect to both physiology and pathology. Moreover, the analytics and origin of 5-AVAB and related compounds will be reviewed.


Assuntos
Aminoácidos Neutros , Microbioma Gastrointestinal , Betaína/metabolismo , Dieta , Humanos
13.
Sci Rep ; 12(1): 6485, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444259

RESUMO

The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types-adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD participated in this randomized controlled intervention study. The intervention group (n = 21) performed high-intensity interval training (HIIT) for 12 weeks while the control group (n = 25) kept their sedentary lifestyle. The participants' clinical parameters and metabolic profiles were compared between baseline and endpoint. HIIT significantly decreased fasting plasma glucose concentration (p = 0.027) and waist circumference (p = 0.028); and increased maximum oxygen consumption rate and maximum achieved workload (p < 0.001). HIIT resulted in sample-type-specific metabolite changes, including accumulation of amino acids and their derivatives in AT and plasma, while decreasing in urine and stool. Moreover, many of the metabolite level changes especially in the AT were correlated with the clinical parameters monitored during the intervention. In addition, certain lipids increased in plasma and decreased in the stool. Glyco-conjugated bile acids decreased in AT and urine. The 12-week HIIT exercise intervention has beneficial ameliorating effects in NAFLD subjects on a whole-body level, even without dietary changes and weight loss. The metabolomics analysis applied to the four different sample matrices provided an overall view on several metabolic pathways that had tissue-type specific changes after HIIT intervention in subjects with NAFLD. The results highlight especially the role of AT in responding to the HIIT challenge, and suggest that altered amino acid metabolism in AT might play a critical role in e.g. improving fasting plasma glucose concentration.Trial registration ClinicalTrials.gov (NCT03995056).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo/metabolismo , Glicemia/metabolismo , Exercício Físico , Humanos , Metabolômica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia
15.
BMC Microbiol ; 22(1): 46, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130835

RESUMO

BACKGROUND: The maternal microbiota affects the development of the offspring by microbial metabolites translocating to the fetus. To reveal the spectrum of these molecular mediators of the earliest host-microbe interactions, we compared placenta, fetal intestine and brain from germ-free (GF) and specific pathogen free (SPF) mouse dams by non-targeted metabolic profiling. RESULTS: One hundred one annotated metabolites and altogether 3680 molecular features were present in significantly different amounts in the placenta and/or fetal organs of GF and SPF mice. More than half of these were more abundant in the SPF organs, suggesting their microbial origin or a metabolic response of the host to the presence of microbes. The clearest separation was observed in the placenta, but most of the molecular features showed significantly different levels also in the fetal intestine and/or brain. Metabolites that were detected in lower amounts in the GF fetal organs included 5-aminovaleric acid betaine, trimethylamine N-oxide, catechol-O-sulphate, hippuric and pipecolic acid. Derivatives of the amino acid tryptophan, such as kynurenine, 3-indolepropionic acid and hydroxyindoleacetic acid, were also less abundant in the absence of microbiota. Ninety-nine molecular features were detected only in the SPF mice. We also observed several molecular features which were more abundant in the GF mice, possibly representing precursors of microbial metabolites or indicators of a metabolic response to the absence of microbiota. CONCLUSIONS: The maternal microbiota has a profound impact on the fetal metabolome. Our observations suggest the existence of a multitude of yet unidentified microbially modified metabolites which pass through the placenta into the fetus and potentially influence fetal development.


Assuntos
Encéfalo/metabolismo , Feto/metabolismo , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Intestinos/metabolismo , Metabolômica , Placenta/metabolismo , Animais , Feminino , Feto/anatomia & histologia , Microbioma Gastrointestinal/genética , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Organismos Livres de Patógenos Específicos
16.
J Asthma ; 59(12): 2375-2385, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35094632

RESUMO

OBJECTIVES: Mepolizumab treatment provides clinical benefits for patients with severe eosinophilic asthma in randomized controlled trials. However, real-world data for patients in Finland are lacking. METHODS: This retrospective, non-interventional, chart review study included patients with severe eosinophilic asthma ≥18 years of age initiating mepolizumab between January 1, 2016 and January 31, 2019 at three investigational sites in Finland. Patient characteristics during the 12 months prior to mepolizumab initiation (baseline) were recorded and primary and secondary endpoints included changes from baseline in disease outcomes during follow-up (up to 24 months following mepolizumab initiation). Exploratory endpoints included association between patient characteristics and exacerbation frequency/annual cumulative oral corticosteroid (OCS) dose. RESULTS: Overall, 51 patients were included (mean 17.8 months follow-up). At baseline, patients had a mean (standard deviation) blood eosinophil count of 550 (410) cells/µL; impaired lung function and health-related quality of life; poor symptom control; frequent exacerbations (2.78/year); and 90% were using OCS (mean: 9.80 mg/day). At the last follow-up visit, reductions from baseline in blood eosinophil count (84%) and fractional exhaled nitric oxide (26%) were observed, as were improvements in Asthma Quality of Life Questionnaire score (36%) and Asthma Control Test score (34%). Reductions in the mean number of annual exacerbations (82%) and mean daily OCS dose (39%) were also seen; reductions were observed even after adjustment for several patient baseline characteristics. CONCLUSIONS: Results are consistent with previous randomized clinical trials, indicating that Finnish patients experience clinically relevant improvements when treated with mepolizumab in real-world clinical practice.


Assuntos
Antiasmáticos , Asma , Eosinofilia Pulmonar , Humanos , Asma/diagnóstico , Antiasmáticos/uso terapêutico , Finlândia , Qualidade de Vida , Estudos Retrospectivos , Eosinofilia Pulmonar/tratamento farmacológico , Corticosteroides/uso terapêutico
17.
Metabolites ; 12(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35050171

RESUMO

Sterols, bile acids, and acylcarnitines are key players in human metabolism. Precise annotations of these metabolites with mass spectrometry analytics are challenging because of the presence of several isomers and stereoisomers, variability in ionization, and their relatively low concentrations in biological samples. Herein, we present a sensitive and simple qualitative LC-MS/MS (liquid chromatography with tandem mass spectrometry) method by utilizing a set of pure chemical standards to facilitate the identification and distribution of sterols, bile acids, and acylcarnitines in biological samples including human stool and plasma; mouse ileum, cecum, jejunum content, duodenum content, and liver; and pig bile, proximal colon, cecum, heart, stool, and liver. With this method, we detected 24 sterol, 32 bile acid, and 27 acylcarnitine standards in one analysis that were separated within 13 min by reversed-phase chromatography. Further, we observed different sterol, bile acid, and acylcarnitine profiles for the different biological samples across the different species. The simultaneous detection and annotation of sterols, bile acids, and acylcarnitines from reference standards and biological samples with high precision represents a valuable tool for screening these metabolites in routine scientific research.

18.
Environ Sci Technol Lett ; 8(10): 839-852, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34660833

RESUMO

The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.

19.
Phytochemistry ; 189: 112820, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091112

RESUMO

Specialized metabolites are essential components in plant defence systems, serving as signalling molecules and chemical weapons against pathogens. The manipulation of plant defence metabolome or metabolites can thus be an important virulence strategy for pathogens. Because of their central role, metabolites can give valuable insights into plant-pathogen interactions. Here, we have conducted nontargeted metabolite profiling with UPLC-ESI-qTOF-MS to investigate the metabolic changes that have taken place in the crown tissue of Fragaria vesca L. (woodland strawberry) and Fragaria × ananassa (Weston) Duchesne ex Rozier (garden strawberry) during 48 h after Phytophthora cactorum challenge. Two P. cactorum isolates were compared: Pc407 is highly virulent to F. × ananassa and causes crown rot, whereas Pc440 is mildly virulent. In total, 45 metabolites differentially accumulated between the treatment groups were tentatively identified. Triterpenoids and various lipid compounds were highly represented. The levels of several triterpenoids increased upon inoculation, some of them showing distinct accumulation patterns in different interactions. Triterpenoids could either inhibit or stimulate P. cactorum growth and, therefore, triterpenoid profiles might have significant impact on disease progression. Of the lipid compounds, lysophospholipids, linoleic acid and linolenic acid were highly accumulated in the most compatible Pc407 - F. × ananassa interaction. As lysophospholipids promote cell death and have been linked to susceptibility, these compounds might be involved in the pathogenesis of crown rot disease. This metabolite analysis revealed potential factors contributing to the outcome of P. cactorum - strawberry interactions. The information is highly valuable, as it can help to find new breeding strategies and new solutions to control P. cactorum in strawberry.


Assuntos
Fragaria , Phytophthora , Lipídeos , Melhoramento Vegetal , Doenças das Plantas , Terpenos
20.
Food Chem ; 357: 129757, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872868

RESUMO

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29-103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03-0.76 min and interval width of 0.33-8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet's accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA