Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(4): 1274-1285, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36240034

RESUMO

OBJECTIVE: Functional resistance training (FRT) during walking is an emerging approach for rehabilitating individuals with neuromuscular or orthopedic injuries. During FRT, wearable exoskeleton/braces can target resistance to a weakened leg joint; however, the resistive properties of the training depend on the type of resistive elements used in the device. Hence, this study was designed to examine how the biomechanical and neural effects of functional resistance training differ with viscous and elastic resistances during both treadmill and overground walking. METHODS: Fourteen able-bodied individuals were trained on two separate sessions with two devices that provided resistance to the knee (viscous and elastic) while walking on a treadmill. We measured gait biomechanics and muscle activation during training, as well as kinematic aftereffects and changes in peripheral fatigue and neural excitability after training. RESULTS: We found the resistance type differentially altered gait kinetics during training-elastic resistance increased knee extension during stance while viscous resistance primarily affected swing. Also, viscous resistance increased power generation while elastic resistance could increase power absorption. Both devices resulted in significant kinematic and neural aftereffects. However, overground kinematic aftereffects and neural excitability did not differ between devices. CONCLUSION: Different resistance types can be used to alter gait biomechanics during training. While there were no resistance-specific changes in acute neural adaptation following training, it is still possible that prolonged and repeated training could produce differential effects. SIGNIFICANCE: Resistance type alters the kinetics of functional resistance training. Prolonged and repeated training sessions on patients will be needed to further measure the effects of these devices.


Assuntos
Treinamento Resistido , Humanos , Caminhada/fisiologia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia
2.
Restor Neurol Neurosci ; 40(2): 97-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527584

RESUMO

BACKGROUND: Despite tremendous advances in the treatment and management of stroke, restoring motor and functional outcomes after stroke continues to be a major clinical challenge. Given the wide range of approaches used in motor rehabilitation, several commentaries have highlighted the lack of a clear scientific basis for different interventions as one critical factor that has led to suboptimal study outcomes. OBJECTIVE: To understand the content of current therapeutic interventions in terms of their active ingredients. METHODS: We conducted an analysis of randomized controlled trials in stroke rehabilitation over a 2-year period from 2019-2020. RESULTS: There were three primary findings: (i) consistent with prior reports, most studies did not provide an explicit rationale for why the treatment would be expected to work, (ii) most therapeutic interventions mentioned multiple active ingredients and there was not a close correspondence between the active ingredients mentioned versus the active ingredients measured in the study, and (iii) multimodal approaches that involved more than one therapeutic approach tended to be combined in an ad-hoc fashion, indicating the lack of a targeted approach. CONCLUSION: These results highlight the need for strengthening cross-disciplinary connections between basic science and clinical studies, and the need for structured development and testing of therapeutic approaches to find more effective treatment interventions.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Humanos , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento
3.
J Orthop Res ; 40(1): 219-230, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101887

RESUMO

Previous research suggests more biomechanically demanding tasks (e.g., stair descent, hopping) magnify biomechanical asymmetries compared with walking after anterior cruciate ligament (ACL) reconstruction. However, it is unclear if modifying task-specific constraints, like walking speed also elicits greater biomechanical asymmetries in this population. We examined the effects of manipulating walking speed on ground reaction force (GRF) asymmetries in individuals with ACL reconstruction and uninjured controls. Thirty individuals with ACL reconstruction (age = 20.6 ± 5.4 years, body mass index [BMI] = 23.9 ± 3.3 kg/m2 ) and 15 controls (age = 23.1 ± 4.5 years, BMI = 23.6 ± 2.7 kg/m2 ) were tested on an instrumented treadmill at three speeds (100%, 120%, and 80% self-selected speed). Bilateral vertical and posterior-anterior GRFs were recorded at each speed. GRF asymmetries were calculated by subtracting the uninjured from the injured limb at each percent of stance. Statistical parametric mapping was used to evaluate the effects of speed on GRF asymmetries across stance. We found vertical and posterior GRF asymmetries were exacerbated at faster speeds and reduced at slower speeds in ACL individuals but not controls (p < .05). No differences in anterior GRF asymmetries were observed between speeds in either group (p > .05). Our results suggest increasing walking speed magnifies GRF asymmetries in individuals with ACL reconstruction. Statement of Clinical Significance: Evaluating both preferred and fast walking speeds may aid in characterizing biomechanical asymmetries in individuals with ACL reconstruction which may be valuable in earlier rehabilitative time points when more difficult tasks like hopping and running are not feasible.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Adolescente , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho/cirurgia , Caminhada , Velocidade de Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...