Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 119: 96-104, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555988

RESUMO

INTRODUCTION: Targeted temperature management (TTM) is considered to be a neuroprotective strategy during cardiopulmonary bypass (CPB) assisted procedures, possibly through the activation of cold shock proteins. We therefore investigated the effects of mild compared with deep hypothermia on the neuroinflammatory response and cold shock protein expression after CPB in rats. METHODS: Wistar rats were subjected to 1 hr of mild (33 °C) or deep (18 °C) hypothermia during CPB or sham procedure. PET scan analyses using TSPO ligand [11C]PBR28 were performed on day 1 (short-term) or day 3 and 7 post-procedure (long-term) to assess neuroinflammation. Hippocampal and cortical samples were obtained at day 1 in the short-term group and at day 7 in the long-term group. mRNA expression of M1 and M2 microglia associated cytokines was analysed with RT-PCR. Cold shock protein RNA-binding motive 3 (RBM3) and tyrosine receptor kinase B (TrkB) receptor protein expression were determined with Western Blot and quantified. RESULTS: In both groups target temperature was reached within an hour. Standard uptake values (SUV) of [11C]PBR28 in CPB rats at 1 day and 3 days were similar to that of sham animals. At 7 days after CPB the SUV was significantly higher in amygdala and hippocampal regions of the CPB 18 °C group as compared to the CPB 33 °C group. No differences were observed in the expression of M1 and M2 microglia-related cytokines between TTM 18 °C and 33 °C. RBM3 protein levels in cortex and hippocampus were significantly higher in CPB 33 °C compared to CPB 18 °C and sham 33 °C, at day 1 and day 7, respectively. CONCLUSIONS: TTM at 18 °C increased the neuroinflammatory response in amygdala and hippocampus compared to TTM at 33 °C in rats undergoing a CPB procedure. Additionally, TTM at 33 °C induced increased expression of TrkB and RBM3 in cortex and hippocampus of rats on CPB compared to TTM at 18 °C. Together, these data indicate that neuroinflammation is alleviated by TTM at 33 °C, possibly by recruiting protective mechanisms through cold shock protein induction.


Assuntos
Ponte Cardiopulmonar , Resposta ao Choque Frio , Hipotermia Induzida , Doenças Neuroinflamatórias , Ratos Wistar , Animais , Ratos , Ponte Cardiopulmonar/métodos , Hipotermia Induzida/métodos , Masculino , Doenças Neuroinflamatórias/metabolismo , Resposta ao Choque Frio/fisiologia , Hipocampo/metabolismo , Microglia/metabolismo , Citocinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Antioxid Redox Signal ; 27(9): 599-617, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28322600

RESUMO

SIGNIFICANCE: Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES: Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS: Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.


Assuntos
Hibernação , Rim/metabolismo , Mitocôndrias/metabolismo , Adaptação Fisiológica , Animais , Antioxidantes/metabolismo , Temperatura Baixa , Humanos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
3.
Shock ; 42(2): 121-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24727871

RESUMO

Coronary artery bypass graft (CABG) surgery can result in severe postoperative organ failure. During CABG surgery, cardiopulmonary bypass (CPB) with cardiac arrest is often used (on-pump CABG), which often results in a systemic inflammatory response. To reduce this inflammatory response, off-pump CABG was reintroduced, thereby avoiding CPB. There is increasing evidence that the endothelium plays an important role in the pathophysiology of organ failure after CABG surgery. In this study, 60 patients who were scheduled for elective CABG surgery were randomized to have surgery for on-pump or off-pump CABG. Blood was collected at four time points: start, end, 6 h, and 24 h postoperatively. Levels of inflammatory cytokines, soluble adhesion molecules, and angiogenic factors and their receptors were measured in the plasma. No differences were found in preoperative characteristics between the patient groups. The levels of tumor necrosis factor-α, interleukin 10, and myeloperoxidase, but not interleukin 6, were increased to a greater extent in the on-pump CABG compared with off-pump CABG after sternum closure. The soluble endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 were not elevated in the plasma during and after CABG surgery in both on-pump and off-pump CABG. Angiopoietin 2 was only increased 24 h after surgery in both on-pump and off-pump CABG. Higher levels of sFlt-1 were found after sternum closure in off-pump CABG compared with on-pump CABG. Avoiding CPB and aortic cross clamping in CABG surgery reduces the systemic inflammatory response. On-pump CABG does not lead to an increased release of soluble endothelial adhesion molecules in the circulation compared with off-pump CABG.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Ponte de Artéria Coronária sem Circulação Extracorpórea/efeitos adversos , Endotélio Vascular/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Idoso , Moléculas de Adesão Celular/sangue , Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/métodos , Doença da Artéria Coronariana/cirurgia , Citocinas/sangue , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA