Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7940, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572670

RESUMO

Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Homeostase , Lipídeos
2.
Nat Commun ; 12(1): 4147, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230470

RESUMO

The TMPRSS2-ERG gene fusion is the most frequent alteration observed in human prostate cancer. However, its role in disease progression is still unclear. In this study, we uncover an important mechanism promoting ERG oncogenic activity. We show that ERG is methylated by Enhancer of zest homolog 2 (EZH2) at a specific lysine residue (K362) located within the internal auto-inhibitory domain. Mechanistically, K362 methylation modifies intra-domain interactions, favors DNA binding and enhances ERG transcriptional activity. In a genetically engineered mouse model of ERG fusion-positive prostate cancer (Pb-Cre4 Pten flox/flox Rosa26-ERG, ERG/PTEN), ERG K362 methylation is associated with PTEN loss and progression to invasive adenocarcinomas. In both ERG positive VCaP cells and ERG/PTEN mice, PTEN loss results in AKT activation and EZH2 phosphorylation at serine 21 that favors ERG methylation. We find that ERG and EZH2 interact and co-occupy several sites in the genome forming trans-activating complexes. Consistently, ERG/EZH2 co-regulated target genes are deregulated preferentially in tumors with concomitant ERG gain and PTEN loss and in castration-resistant prostate cancers. Collectively, these findings identify ERG methylation as a post-translational modification sustaining disease progression in ERG-positive prostate cancers.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lisina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/metabolismo , Serina Endopeptidases/metabolismo , Regulador Transcricional ERG/metabolismo , Adenocarcinoma/genética , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Serina Endopeptidases/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética
3.
Commun Biol ; 4(1): 119, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500545

RESUMO

Extracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH. Release of miR-424 in small EVs was enhanced in cell lines (LNCaPabl), transgenic mice (Pb-Cre4;Ptenflox/flox;Rosa26ERG/ERG) and patient-derived xenograft (PDX) models of aggressive disease. EVs containing miR-424 promoted stem-like traits and tumor-initiating properties in normal prostate epithelial cells while enhanced tumorigenesis in transformed prostate epithelial cells. Intravenous administration of miR-424 positive EVs to mice, mimicking blood circulation, promoted miR-424 transfer and tumor growth in xenograft models. Circulating miR-424 positive EVs from patients with aggressive primary and metastatic tumors induced stem-like features when supplemented to prostate epithelial cells. This study establishes that EVs-mediated transfer of miR-424 across heterogeneous cell populations is an important mechanism of tumor self-sustenance, disease recurrence and progression. These findings might indicate novel approaches for the management and therapy of prostate cancer.


Assuntos
Transformação Celular Neoplásica/genética , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , MicroRNAs/genética , Modelos Teóricos , Invasividade Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
4.
Eur Urol Oncol ; 4(3): 437-446, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-31402217

RESUMO

BACKGROUND: Chemotherapy is the treatment of choice for metastatic castration-resistant prostate cancer (mCRPC) nonresponsive to androgen receptor-targeted therapies. Nevertheless, the impact of chemotherapy on patient survival is limited and clinical outcome remain dismal. Bromodomain and extraterminal inhibitors (BETis) are attractive therapeutic agents and currently in clinical trials to be tested for their efficacy in prostate cancer patients. OBJECTIVE: In this study, we evaluated the activity of two clinical stage BETis, INCB054329 and INCB057643, alone and in combination with chemotherapeutics used for the treatment of mCRPC. DESIGN, SETTING, AND PARTICIPANTS: Drug activity was evaluated in vitro by MTT, clonogenic, prostato-sphere, and flow cytometry assays. The activity in vivo was evaluated in mice bearing prostate tumor (22Rv1) xenografts. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cell growth data were analyzed to determine the maximum effect and the concentration that reduces by 50%. For concomitant treatments, the combination index was determined according to the Chou-Talalay method. For in vivo activity, changes in tumor size (T/Ci%), weight (T/Cd%), doubling time, and mouse body weight were monitored. Statistical significance was determined by one-way analysis of variance followed by a Student-Newman-Keuls or Turkey a posteriori test. RESULTS AND LIMITATIONS: INCB054329 and INCB057643 had significant activity as single agents in human prostate cancer cell lines and 22Rv1 tumor xenografts. Combined treatment with INCB057643 and any of docetaxel, olaparib, or carboplatin was synergistic/additive in vitro. Notably, INCB057643, given with a low-intensity dosing schedule, greatly enhanced the anti-tumor activity of docetaxel, carboplatin, and olaparib in 22Rv1 tumor xenografts. CONCLUSIONS: Collectively, these results provide the first evidence of the therapeutic benefit obtainable by combining BETis with non-androgen receptor-targeted therapies for the treatment of mCRPC. PATIENT SUMMARY: Chemotherapy has limited efficacy in patients with metastatic castration-resistant prostate cancer. This study provides evidence of enhanced efficacy of clinically used chemotherapeutics when given in combination with the bromodomain and extraterminal inhibitor INCB057643, expanding the horizon of the current options for the treatment of prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Animais , Ácidos Borônicos , Docetaxel , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Pirimidinas
5.
Eur Urol Oncol ; 2(4): 415-424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31277777

RESUMO

BACKGROUND: The TMPRSS2-ERG gene fusion is the most frequent genetic rearrangement in prostate cancers and results in broad transcriptional reprogramming and major phenotypic changes. Interaction and cooperation of ERG and SP1 may be instrumental in sustaining the tumorigenic and metastatic phenotype and could represent a potential vulnerability in ERG fusion-positive tumors. OBJECTIVE: To test the activity of EC-8042, a compound able to block SP1, in cellular and mouse models of ERG-positive prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: We evaluated the activity of EC-8042 in cell cultures and ERG/PTEN transgenic/knockout mice that provide reliable models for testing novel therapeutics in this specific disease context. Using a new protocol to generate tumor spheroids from ERG/PTEN mice, we also examined the effects of EC-8042 on tumor-propagating stem-like cancer cells with high self-renewal and tumorigenic capabilities. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The efficacy of EC-8042 was determined by measuring the proliferative capacity and target gene expression in cell cultures, invasive and metastatic capabilities in chick chorioallantoic membrane assays, and tumor development in mice. Significance was determined using statistical test. RESULTS AND LIMITATIONS: EC-8042 blocked transcription of ERG-regulated genes and reverted the invasive and metastatic phenotype of VCaP cells. EC-8042 blocked the expansion of stem-like tumor cells in tumor spheroids from VCaP cells and mouse-derived tumors. In ERG/PTEN mice, systemic treatment with EC-8042 inhibited ERG-regulated gene transcription, tumor progression, and tumor-propagating stem-like tumor cells. CONCLUSIONS: Our data support clinical testing of EC-8042 for the treatment of ERG-positive prostate cancer in precision medicine approaches. PATIENT SUMMARY: In this study, EC-8042, a novel compound with a favorable pharmacological and toxicological profile, exhibited relevant activity in cell cultures and in vivo in a genetically engineered mouse model that closely recapitulates the features of clinically aggressive ERG-positive prostate cancer. Our data indicate that further evaluation of EC-8042 in clinical trials is warranted.


Assuntos
Plicamicina/análogos & derivados , Neoplasias da Próstata/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Regulador Transcricional ERG/genética , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Transgênicos , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase/genética , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
6.
Front Oncol ; 9: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143708

RESUMO

Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...