Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Placenta ; 126: 175-183, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853410

RESUMO

INTRODUCTION: In preeclampsia (PE), inadequate remodelling of spiral arterioles in the decidua basalis causes oxidative stress and subsequent increased release of antiangiogenic soluble endoglin (sENG) into the maternal circulation. Decidual mesenchymal stem/stromal cells (DMSCs) reside adjacent to endothelial cells in this vascular niche. Surprisingly, DMSCs express membrane-bound ENG (CD105). PE-affected DMSCs (PE-DMSCs) are abnormal and due to reduced extravillous invasion, more of them are present, but the significance of this is not known. METHODS: DMSCs were isolated and characterised from normotensive control and severe-PE placentae. Extracellular vesicle (EV) types, shed microvesicles (sMV) and exosomes, were isolated from DMSC conditioned media (DMSCCM), respectively. Secretion of ENG by DMSCs was assessed by ELISA of DMSCCM, with and without EV depletion. The effects of reducing ENG concentration, by blocking antibody, on human umbilical vein endothelial cell (HUVEC) attachment were assessed by xCELLigence real-time functional assays. RESULTS: ENG was detected in DMSCCM and these levels significantly decreased when depleted of exosomes and sMV. There was no significant difference in the amount of ENG secreted by control DMSCs and PE-DMSCs. Blocking ENG in concentrated DMSCCM, used to treat HUVECs, improved endothelial cell attachment. DISCUSSION: In normotensive pregnancies, DMSC secretion of ENG likely has a beneficial effect on endothelial cells. However, in PE pregnancies, shallow invasion of the spiral arterioles exposes more PE-DMSC derived sources of ENG (soluble and EV). The presence of these PE-DMSCs in the vascular niche contributes to endothelial cell dysfunction.


Assuntos
Células-Tronco Mesenquimais , Pré-Eclâmpsia , Endoglina/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
2.
Placenta ; 31(9): 747-55, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20659767

RESUMO

Colonisation of the maternal uterine wall by the trophoblast involves a series of alterations in the behaviour and morphology of trophoblast cells. Villous cytotrophoblast cells change from a well-organised coherently layered phenotype to one that is extravillous, acquiring a proliferative, migratory and invasive capacity, to facilitate fetal-maternal interaction. These changes are similar to those of other developmental processes falling under the umbrella of an epithelial-mesenchymal transition (EMT). Modulation of cell adhesion and cell polarity occurs through changes in cell-cell junctional molecules, such as the cadherins. The cadherins, particularly the classical cadherins (e.g. Epithelial-(E)-cadherin), and their link to adaptors called catenins at cell-cell contacts, are important for maintaining cell attachment and the layered phenotype of the villous cytotrophoblast. In contrast, reduced expression and re-organization of cadherins from these cell junctional regions promote a loosened connection between cells, coupled with reduced apico-basal polarity. Certain non-classical cadherins play an active role in cell migration processes. In addition to the classical cadherins, two other cadherins which have been reported in placental tissues are vascular endothelial (VE) cadherin and cadherin-11. Cadherin molecules are well placed to be key regulators of trophoblast cell behaviour, analogous to their role in other developmental EMTs. This review addresses cadherin expression and function in normal and diseased human placental tissues, especially in fetal growth restriction and pre-eclampsia where trophoblast invasion is reduced.


Assuntos
Caderinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Placentação/fisiologia , Caderinas/biossíntese , Adesão Celular , Movimento Celular/genética , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Trofoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA