Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 144960, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477039

RESUMO

This article studies the ecotoxicity of 3,3',4',5-tetrachlorosalicylanilide (TCSA) using different bioassays and examines its fate in activated sludge batch experiments. Despite of the common use of TCSA as chemical uncoupler in wastewater treatment systems and as preservative in several products, limited data has been published for its ecotoxicity, while no information is available for its biodegradation. Among different bioassays, the highest toxicity of TSCA was noticed for Daphna magna (48-h LC50: 0.054 mg L-1), followed by Vibrio fischeri (15-min EC50: 0.392 mg L-1), Lemna minor, (7-d EC50: 5.74 mg L-1) and activated sludge respiration rate (3-h EC50: 31.1 mg L-1). The half-life of TSCA was equal to 7.3 h in biodegradation experiments with activated sludge, while use of mass balances showed that 90% of this compound is expected to be removed in an aerobic activated sludge system, mainly due to biodegradation. A preliminary risk assessment of TSCA using the Risk Quotient methodology showed possible ecological threat in rivers where wastewater is diluted up to 100-fold. Comparison with the structurally similar 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan, TCS) showed that both compounds have similar biodegradation potential and seem to cause analogous toxicity to Vibrio fischeri and activated sludge. Specifically, TCS was biodegraded quite rapidly by activated sludge (half-life: 6.2 h), while EC50 values equal to 0.134 mg L-1 and 39.9 mg L-1 were calculated for Vibrio fischeri, and activated sludge respiration rate. Future research should focus on monitoring of TSCA concentrations in the environment and study its effects in long-term toxicity and bioaccumulation tests.


Assuntos
Triclosan , Poluentes Químicos da Água , Biodegradação Ambiental , Salicilanilidas , Esgotos , Triclosan/análise , Triclosan/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Bioresour Technol ; 247: 380-386, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28957770

RESUMO

Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane was obtained at 1.2V, inlet biogas rate of 0.088mL/h/mL reactor and NaCl concentration of 100mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas and treat wastewater which can be used as proof of concept for further investigation.


Assuntos
Biocombustíveis , Dióxido de Carbono , Eletrodos , Metano , Gás Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...