Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
medRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38699304

RESUMO

Autism is four times more prevalent in males than females. To study whether this reflects a difference in genetic predisposition attributed to autosomal rare variants, we evaluated the sex differences in effect size of damaging protein-truncating and missense variants on autism predisposition in 47,061 autistic individuals, then compared effect sizes between individuals with and without cognitive impairment or motor delay. Although these variants mediated differential likelihood of autism with versus without motor or cognitive impairment, their effect sizes on the liability scale did not differ significantly by sex exome-wide or in genes sex-differentially expressed in the cortex. Although de novo mutations were enriched in genes with male-biased expression in the fetal cortex, the liability they conferred did not differ significantly from other genes with similar loss-of-function intolerance and sex-averaged cortical expression. In summary, autosomal rare coding variants confer similar liability for autism in females and males.

2.
Eur J Hum Genet ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316952

RESUMO

Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.

3.
Hum Genet ; 142(12): 1747-1754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957369

RESUMO

Machado-Joseph disease (MJD/SCA3) is the most frequent dominant ataxia worldwide. It is caused by a (CAG)n expansion. MJD has two major ancestral backgrounds: the Machado lineage, found mainly in Portuguese families; and the Joseph lineage, present in all five continents, probably originating in Asia. MJD has been described in a few African and African-American families, but here we report the first diagnosed in Sudan to our knowledge. The proband presented with gait ataxia at age 24; followed by muscle cramps and spasticity, and dysarthria, by age 26; he was wheel-chair bound at 29 years of age. His brother had gait problems from age 20 years and, by age 21, lost the ability to run, showed dysarthria and muscle cramps. To assess the mutational origin of this family, we genotyped 30 SNPs and 7 STRs flanking the ATXN3_CAG repeat in three siblings and the non-transmitting father. We compared the MJD haplotype segregating in the family with our cohort of MJD families from diverse populations. Unlike all other known families of African origin, the Machado lineage was observed in Sudan, being shared with 86 Portuguese, 2 Spanish and 2 North-American families. The STR-based haplotype of Sudanese patients, however, was distinct, being four steps (2 STR mutations and 2 recombinations) away from the founder haplotype shared by 47 families, all of Portuguese extraction. Based on the phylogenetic network constructed with all MJD families of the Machado lineage, we estimated a common ancestry at 3211 ± 693 years ago.


Assuntos
Doença de Machado-Joseph , Masculino , Humanos , Adulto Jovem , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico , Portugal , Cãibra Muscular , Disartria , Filogenia , África Oriental
4.
Expert Rev Mol Diagn ; 23(8): 723-727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449513

RESUMO

BACKGROUND: Gene models based on GRCh37 human genome assembly are preferred by many international projects over other updated assemblies (GRCh38 and T2T). Discrepant genes (DGs), those recognized as protein coding in the new but not the old assembly, are ignored by several genomic resources and discarded by variant prioritization tools relying on information based on GRCh37. METHODS: We curated a set of Ensembl genes with discrepant annotations between GRCh37 and GRCh38, additionally matching their RefSeq transcripts. Furthermore, we examined their clinical and phenotypic relevance. RESULTS: A total of 337 genes were reclassified as 'protein-coding' in GRCh38 but not in GRCh37, with 194 having a discrepant HGNC gene symbol. Many remain missing from the current known RefSeq gene models (N = 73). We found many clinically relevant genes in this group of neglected genes, and we anticipate that many more will be found relevant in the future. Important additional annotations such as evolutionary constraint metrics are also not calculated for these genes, further relegating them into oblivion. CONCLUSION: For discrepant genes, the inaccurate label of 'non-protein-coding' has relevant ramifications on clinical genetics. Accurate collation of these genes allows for manual curation in clinically relevant scenarios.


Assuntos
Genoma Humano , Genômica , Humanos , Anotação de Sequência Molecular
5.
Eur J Hum Genet ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012327

RESUMO

Hereditary spinocerebellar degenerations (SCDs) is an umbrella term that covers a group of monogenic conditions that share common pathogenic mechanisms and include hereditary spastic paraplegia (HSP), cerebellar ataxia, and spinocerebellar ataxia. They are often complicated with axonal neuropathy and/or intellectual impairment and overlap with many neurological conditions, including neurodevelopmental disorders. More than 200 genes and loci inherited through all modes of Mendelian inheritance are known. Autosomal recessive inheritance predominates in consanguineous communities; however, autosomal dominant and X-linked inheritance can also occur. Sudan is inhabited by genetically diverse populations, yet it has high consanguinity rates. We used next-generation sequencing, genotyping, bioinformatics analysis, and candidate gene approaches to study 90 affected patients from 38 unrelated Sudanese families segregating multiple forms of SCDs. The age-at-onset in our cohort ranged from birth to 35 years; however, most patients manifested childhood-onset diseases (the mean and median ages at onset were 7.5 and 3 years, respectively). We reached the genetic diagnosis in 63% and possibly up to 73% of the studied families when considering variants of unknown significance. Combining the present data with our previous analysis of 25 Sudanese HSP families, the success rate reached 52-59% (31-35/59 families). In this article we report candidate variants in genes previously known to be associated with SCDs or other phenotypically related monogenic disorders. We also highlight the genetic and clinical heterogeneity of SCDs in Sudan, as we did not identify a major causative gene in our cohort, and the potential for discovering novel SCD genes in this population.

6.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977636

RESUMO

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Assuntos
Epilepsia , Convulsões , Animais , Feminino , Humanos , Camundongos , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões/genética , Convulsões/metabolismo
7.
Curr Neuropharmacol ; 21(1): 105-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35579153

RESUMO

BACKGROUND: Previous studies suggest that different metabotropic glutamate (mGlu) receptor subtypes are potential drug targets for treating absence epilepsy. However, no information is available on mGlu3 receptors. OBJECTIVE: To examine whether (i) changes of mGlu3 receptor expression/signaling are found in the somatosensory cortex and thalamus of WAG/Rij rats developing spontaneous absence seizures; (ii) selective activation of mGlu3 receptors with LY2794193 affects the number and duration of spikewave discharges (SWDs) in WAG/Rij rats; and (iii) a genetic variant of GRM3 (encoding the mGlu3 receptor) is associated with absence epilepsy. METHODS: Animals: immunoblot analysis of mGlu3 receptors, GAT-1, GLAST, and GLT-1; realtime PCR analysis of mGlu3 mRNA levels; assessment of mGlu3 receptor signaling; EEG analysis of SWDs; assessment of depressive-like behavior. Humans: search for GRM3 and GRM5 missense variants in 196 patients with absence epilepsy or other Idiopathic Generalized Epilepsy (IGE)/ Genetic Generalized Epilepsy (GGE) and 125,748 controls. RESULTS: mGlu3 protein levels and mGlu3-mediated inhibition of cAMP formation were reduced in the thalamus and somatosensory cortex of pre-symptomatic (25-27 days old) and symptomatic (6-7 months old) WAG/Rij rats compared to age-matched controls. Treatment with LY2794193 (1 or 10 mg/kg, i.p.) reduced absence seizures and depressive-like behavior in WAG/Rij rats. LY2794193 also enhanced GAT1, GLAST, and GLT-1 protein levels in the thalamus and somatosensory cortex. GRM3 and GRM5 gene variants did not differ between epileptic patients and controls. CONCLUSION: We suggest that mGlu3 receptors modulate the activity of the cortico-thalamo-cortical circuit underlying SWDs and that selective mGlu3 receptor agonists are promising candidate drugs for absence epilepsy treatment.


Assuntos
Epilepsia Tipo Ausência , Receptores de Glutamato Metabotrópico , Ratos , Humanos , Animais , Lactente , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Eletroencefalografia , Convulsões , Genética Humana , Modelos Animais de Doenças
8.
EBioMedicine ; 98: 104855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251463

RESUMO

BACKGROUND: Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS: We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS: Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION: We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING: BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.


Assuntos
Ataxia , Neurônios , Humanos , Animais , Camundongos , Ataxia/diagnóstico , Ataxia/genética , Códon sem Sentido , Bloqueadores dos Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.6/genética
9.
EBioMedicine ; 84: 104244, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088682

RESUMO

BACKGROUND: De novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described to cause developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. METHODS: 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with homology modelling. FINDINGS: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures; two variants were also associated with mild to moderate ID. All missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The R359C variant altered PI(4,5)P2-interaction. INTERPRETATION: Our study identified deleterious KCNQ5 variants in GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on network level are necessary to understand which circuits are affected and how this induces generalized seizures. FUNDING: DFG/FNR Research Unit FOR-2715 (Germany/Luxemburg), BMBF rare disease network Treat-ION (Germany), foundation 'no epilep' (Germany).


Assuntos
Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Animais , Epilepsia/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Humanos , Deficiência Intelectual/genética , Mamíferos , Mutação , Fosfolipídeos
10.
Front Pediatr ; 10: 944784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090556

RESUMO

We present a now 18-year-old female patient with a severe congenital myopathy phenotype, originally diagnosed as mitochondrial myopathy, however later revealed to constitute a SCN4A-related myopathy based on genetic testing. After birth, floppiness, bradycardia and respiratory insufficiency ensued, and moderately reduced mitochondrial complex I activity was found in muscle tissue (tested at 3 weeks and 3 years of age, respectively). She was treated with riboflavin, carnitine, creatine and a ketogenic diet. At the age of 13 years, whole exome sequencing challenged the initial diagnosis by identifying two (compound heterozygous) SCN4A variants affecting the highly conserved voltage sensor and pore regions of the voltage-gated sodium channel NaV1.4: a known pathogenic loss of function (LOF) variant [c.4360C>T; p.(Arg1454Trp)] and a novel variant of uncertain significance [c.3615C>G; p.(Asn1205Lys)]. For this novel variant, a LOF effect was predicted by in silico, clinical and functional evidence from paralog human sodium channels, and the variant was accordingly classified as likely pathogenic. The patient's phenotype is in line with the few published cases of autosomal recessive SCN4A-related myopathy. There was limited benefit from treatment with salbutamol and acetazolamide, while pyridostigmine caused side effects at a minor dose. This report highlights the importance of genetic testing in severe myopathies particularly in regard to treatment options and the value of paralog information in evaluating ion channel variations.

11.
Front Genet ; 13: 883211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719383

RESUMO

Pontocerebellar hypoplasia type 10 (PCH10) is a very rare autosomal recessive neurodegenerative disease characterized by intellectual disability, microcephaly, severe developmental delay, pyramidal signs, mild cerebellar atrophy, and white matter changes in the brain, as shown by magnetic resonance imaging (MRI). The disease has been described in only twenty-one patients from ten Turkish families with a founder missense pathogenic variant in the CLP1 gene involved in tRNA processing and maturation. We analyzed three siblings from a consanguineous Sudanese family who presented with intellectual disability, dysmorphic features, developmental delay, regression of milestones, microcephaly, epilepsy, extrapyramidal signs, mild pontine, and cerebellar atrophy. We identified through whole-exome sequencing the same pathogenic variant (c.419G>A; p(Arg140His) reported before in all Turkish families. Our study extends the phenotypes of PCH10 and reports for the first time cases with PCH10 of non-Turkish origin.

12.
Epilepsia ; 63(3): 723-735, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032048

RESUMO

OBJECTIVE: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. METHODS: We performed a case-control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding γ-aminobutyric acid type A [GABAA ] receptors, 113 genes representing the GABAergic pathway). RESULTS: GABRG2 was associated with GGE (p = 1.8 × 10-5 ), approaching study-wide significance in familial GGE (p = 3.0 × 10-6 ), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9-7.8, false discovery rate [FDR]-adjusted p = .0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3-6.7, FDR-adjusted p = .022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3-2.5, FDR-adjusted p = .0024) but not with sporadic GGE (OR = 1.3, 95% CI = .9-1.9, FDR-adjusted p = .19). SIGNIFICANCE: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE.


Assuntos
Epilepsia Generalizada , Predisposição Genética para Doença , Estudos de Casos e Controles , Epilepsia Generalizada/genética , Predisposição Genética para Doença/genética , Humanos , Receptores de GABA-A/genética , Sequenciamento do Exoma , Ácido gama-Aminobutírico
13.
J Hum Genet ; 67(3): 127-132, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34504271

RESUMO

Mutations in MLC1 cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare form of leukodystrophy characterized by macrocephaly, epilepsy, spasticity, and slow mental deterioration. Genetic studies of MLC are lacking from many parts of the world, especially in Sub-Saharan Africa. Genomic DNA was extracted for 67 leukodystrophic patients from 43 Sudanese families. Mutations were screened using the NGS panel testing 139 leukodystrophies and leukoencephalopathies causing genes (NextSeq500 Illumina). Five homozygous MLC1 variants were discovered in seven patients from five distinct families, including three consanguineous families from the same region of Sudan. Three variants were missense (c.971 T > G, p.Ile324Ser; c.344 T > C, p.Phe115Ser; and c.881 C > T, p.Pro294Leu), one duplication (c.831_838dupATATCTGT, p.Ser280Tyrfs*8), and one synonymous/splicing-site mutation (c.762 C > T, p.Ser254). The segregation pattern was consistent with autosomal recessive inheritance. The clinical presentation and brain MRI of the seven affected patients were consistent with the diagnosis of MLC1. Due to the high frequency of distinct MLC1 mutations found in our leukodystrophic Sudanese families, we analyzed the coding sequence of MLC1 gene in 124 individuals from the Sudanese genome project in comparison with the 1000-genome project. We found that Sudan has the highest proportion of deleterious variants in MLC1 gene compared with other populations from the 1000-genome project.


Assuntos
Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Megalencefalia , Cistos/diagnóstico , Cistos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , Mutação
14.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633442

RESUMO

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mutação com Ganho de Função , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
15.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34431999

RESUMO

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Assuntos
Epilepsia Generalizada , Síndromes Epilépticas , Deficiência Intelectual , Canal de Sódio Disparado por Voltagem NAV1.6 , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Prognóstico , Convulsões/tratamento farmacológico , Convulsões/genética , Bloqueadores dos Canais de Sódio/uso terapêutico
16.
Epilepsy Res ; 178: 106824, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847423

RESUMO

SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Potenciais de Ação/genética , Epilepsia/genética , Mutação com Ganho de Função , Humanos , Potenciais da Membrana/fisiologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética
17.
Front Neurol ; 12: 720201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489854

RESUMO

Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion: ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.

18.
EBioMedicine ; 72: 103588, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571366

RESUMO

BACKGROUND: Analyses of few gene-sets in epilepsy showed a potential to unravel key disease associations. We set out to investigate the burden of ultra-rare variants (URVs) in a comprehensive range of biologically informed gene-sets presumed to be implicated in epileptogenesis. METHODS: The burden of 12 URV types in 92 gene-sets was compared between cases and controls using whole exome sequencing data from individuals of European descent with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), or non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. FINDINGS: Missense URVs in highly constrained regions were enriched in neuron-specific and developmental genes, whereas genes not expressed in brain were not affected. GGE featured a higher burden in gene-sets derived from inhibitory vs. excitatory neurons or associated receptors, whereas the opposite was found for NAFE, and DEE featured a burden in both. Top-ranked susceptibility genes from recent genome-wide association studies (GWAS) and gene-sets derived from generalized vs. focal epilepsies revealed specific enrichment patterns of URVs in GGE vs. NAFE. INTERPRETATION: Missense URVs affecting highly constrained sites differentially impact genes expressed in inhibitory vs. excitatory pathways in generalized vs. focal epilepsies. The excess of URVs in top-ranked GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. FUNDING: DFG Research Unit FOR-2715 (Germany), FNR (Luxembourg), NHGRI (US), NHLBI (US), DAAD (Germany).


Assuntos
Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudos de Casos e Controles , Exoma/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Sequenciamento do Exoma/métodos
19.
Front Neurol ; 12: 701351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305802

RESUMO

Paroxysmal dyskinesias (PxD) are rare movement disorders with characteristic episodes of involuntary mixed hyperkinetic movements. Scientific efforts and technical advances in molecular genetics have led to the discovery of a variety of genes associated with PxD; however, clinical and genetic information of rarely affected genes or infrequent variants is often limited. In our case series, we present two individuals with PxD including one with classical paroxysmal kinesigenic dyskinesia, who carry new likely pathogenic de novo variants in KCNA1 (p.Gly396Val and p.Gly396Arg). The gene has only recently been discovered to be causative for familial paroxysmal kinesigenic dyskinesia. We also provide genetic evidence for pathogenicity of two newly identified disease-causing variants in SLC2A1 (p.Met96Thr and p.Leu231Pro) leading to paroxysmal exercise-induced dyskinesia. Since clinical information of carriers of variants in known disease-causing genes is often scarce, we encourage to share clinical data of individuals with rare or novel (likely) pathogenic variants to improve disease understanding.

20.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34245260

RESUMO

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Assuntos
Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/metabolismo , Variação Genética , Ativação do Canal Iônico , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Alelos , Substituição de Aminoácidos , Biomarcadores , Deficiências do Desenvolvimento/diagnóstico , Suscetibilidade a Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Subunidades Proteicas , Canais de Potássio Shal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...