Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 17(10): 8029-35, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434134

RESUMO

Long lengths (250 meters) of a flexible 150 microm diameter glass-clad optical fiber containing a 15 microm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the core to be very highly crystalline germanium with no observed secondary phases. Elemental analysis confirmed a very well-defined core-clad interface with a step-profile in composition and nominally 4 weight-percent oxygen having diffused into the germanium core from the glass cladding. For this proof-of-concept fiber, polycrystalline n-type germanium of unknown dopant concentration was used. The measured infrared transparency of the starting material was poor and, as a likely outcome, the attenuation of the resultant fiber was too high to be measured. However, the larger Raman cross-section, infrared and terahertz transparency of germanium over silicon should make these fibers of significant value for fiber-based mid- to long-wave infrared and terahertz waveguides and Raman-shifted infrared light sources once high-purity, high-resistivity germanium is employed.

2.
Opt Lett ; 34(7): 1033-5, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19340210

RESUMO

The field of transparent ceramics is enjoying a renaissance, as refractory oxides are being developed as alternatives to single crystals in high-performance laser systems. However, a significant challenge remains regarding the reduction of the grain size to sufficiently subwavelength dimensions in order to achieve the same degree of optical transparency as the single-crystal analog. Here we report transparent yttria (Y2O3) ceramics that were synthesized by a pressure-assisted, two-step, low-temperature sintering process with an average grain size of 300 nm. These nanograined ceramics exhibit equivalent transmission to single crystalline yttria for wavelengths greater than about 1200 nm. The single-crystal-like transmittance of the nanograined yttria ceramics in the visible and IR region is an important advancement for the use of these materials in more-extreme environments, including high-energy laser systems where reduction of scattering is paramount.

3.
Opt Express ; 16(16): 11769-75, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18679448

RESUMO

Eu3+ doped LaF3 nanoparticles with core/shell morphologies were synthesized and selected spectroscopic properties were measured as a function of heat treatment times and temperatures. More specifically, the relative intensity of photoluminescence spectra, both through direct excitation of the lanthanide as well as phonon sideband spectra were evaluated with increasing amounts of time held at specific temperatures. A one dimensional approximation was used to compute an effective diffusion coefficient for the rare earth dopants in LaF3. Despite the simplicity of the model employed, the calculated diffusion coefficients based on the spectroscopic results are accurate within an order of magnitude in comparison to other fluoride crystals yielding a simplified approach to estimating kinetic and diffusion effects in optical materials.


Assuntos
Algoritmos , Medições Luminescentes/métodos , Metais Terras Raras/química , Modelos Químicos , Nanopartículas/química , Simulação por Computador , Difusão
4.
Opt Express ; 16(23): 18675-83, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19581953

RESUMO

Described herein are initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods. Such semiconductor core fibers have potential to greatly influence the fields of nonlinear fiber optics, infrared and THz power delivery. More specifically, x-ray diffraction and Raman spectroscopy showed the core to be highly crystalline silicon. The measured propagation losses were 4.3 dB/m at 2.936 microm, which likely are caused by either microcracks in the core arising from the large thermal expansion mismatch with the cladding or to SiO(2) precipitates formed from oxygen dissolved in the silicon melt. Suggestions for enhancing the performance of these semiconductor core fibers are provided. Here we show that lengths of an optical fiber containing a highly crystalline semiconducting core can be produced using scalable fiber fabrication techniques.


Assuntos
Cristalização/métodos , Fibras Ópticas , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...