Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(8): 1522-1537, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978287

RESUMO

Together with increasing environmental and anthropogenic pressures, pathogenic diseases are one of the important factors contributing to the ongoing decline of seagrass meadows worldwide; yet the diversity and ecology of the microorganisms acknowledged as seagrass parasites remain critically understudied. Here, we investigate phytomyxid parasites (Rhizaria: Endomyxa: Phytomyxea) of three different eelgrass (Zostera spp.) species found in the Northern hemisphere. We present molecular evidence that Plasmodiophora bicaudata, a long-recognized parasite of dwarf eelgrass taxa, is closely related to the novel phytomyxid recently discovered in root hairs of Zostera marina, and together they form a distinct clade within the order Phagomyxida, proposed here as Feldmanniella gen. nov. A full life cycle is systematically described in a phagomyxid representative for the first time, proving its conformity with the generalized phytomyxid life history, despite previous uncertainties. The presence of primary infection stages in nearly all collected eelgrass specimens, and subsequent analysis of amplicon sequences from a global Z. marina dataset, reveal phytomyxids to be ubiquitous and one of the predominant microeukaryotes associated with eelgrass roots on a global scale. Our discoveries challenge the current view of Phytomyxea as rare entities in seagrass meadows and suggest their generally low pathogenicity in natural ecosystems.


Assuntos
Parasitos , Zosteraceae , Animais , Ecossistema , Eucariotos , Rizosfera
2.
Microb Ecol ; 81(3): 673-686, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33021677

RESUMO

Marine representatives of Phytomyxea (SAR: Rhizaria: Endomyxa), a peculiar class of obligate endobiotic parasites, are a greatly understudied ecological group of protists infecting many algal, diatom, and seagrass species. Very little is known about the actual diversity, ecology, and pathogenic potential of these organisms and their taxonomic treatment in many cases follows outdated morphotaxonomic concepts. Here we focused on resolving the phylogenetic relations of the phytomyxean parasites of the widespread seagrass genus Halophila. We report the first finding of Plasmodiophora halophilae, the parasite of ovate-leaf Halophila species, after more than 100 years since its original description in 1913. We provide additional information on its anatomy, morphology, distribution, and host range, together with a phylogenetic evidence that it is congeneric with the recently rediscovered species infecting the invasive seagrass Halophila stipulacea in the Mediterranean Sea. Despite the previously hypothesized affiliation of the latter to Tetramyxa, our phylogenetic analyses of the 18S rRNA gene place Tetramyxa parasitica (a parasite of brackish water phanerogams and the type species of the genus) in the freshwater/terrestrial phytomyxean order Plasmodiophorida and reveal that phytomyxids associated with Halophila spp. form a separate deep-branching clade within the class proposed here as Marinomyxa gen. nov. We further argue that M. marina infecting H. stipulacea is most likely a species-specific parasite and implies their comigration through the Suez Canal.


Assuntos
Hydrocharitaceae , Parasitos , Rhizaria , Animais , Filogenia , RNA Ribossômico 18S/genética
3.
Microb Ecol ; 79(3): 631-643, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31664477

RESUMO

Marine phytomyxids represent often overlooked obligate biotrophic parasites colonizing diatoms, brown algae, and seagrasses. An illustrative example of their enigmatic nature is the phytomyxid infecting the seagrass Halophila stipulacea (a well-known Lessepsian migrant from the Indo-Pacific to the Mediterranean Sea). In the Mediterranean, the occurrence of this phytomyxid was first described in 1995 in the Strait of Messina (southern Italy) and the second time in 2017 in the Aegean coast of Turkey. Here we investigated, using scuba diving, stereomicroscopy, light and scanning electron microscopy, and molecular methods, whether the symbiosis is still present in southern Italy, its distribution in this region and its relation to the previous reports. From the total of 16 localities investigated, the symbiosis has only been found at one site. A seasonal pattern was observed with exceptionally high abundance (> 40% of the leaf petioles colonized) in September 2017, absence of the symbiosis in May/June 2018, and then again high infection rates (~ 30%) in September 2018. In terms of anatomy and morphology as well as resting spore dimensions and arrangement, the symbiosis seems to be identical to the preceding observations in the Mediterranean. According to the phylogenetic analyses of the 18S rRNA gene, the phytomyxid represents the first characterized member of the environmental clade "TAGIRI-5". Our results provide new clues about its on-site ecology (incl. possible dispersal mechanisms), hint that it is rare but established in the Mediterranean, and encourage further research into its distribution, ecophysiology, and taxonomy.


Assuntos
Cercozoários/fisiologia , Hydrocharitaceae/parasitologia , Folhas de Planta/parasitologia , Simbiose , Cercozoários/classificação , Cercozoários/genética , Espécies Introduzidas , Itália , Mar Mediterrâneo , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...