Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(22): 36734-36744, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809077

RESUMO

We have developed a compact vacuum system for laser cooling and spectroscopy of neutral thulium atoms. Compactness is achieved by obviating a classical Zeeman slower section and placing an atomic oven close to a magneto-optical trap (MOT), specifically at the distance of 11 cm. In this configuration, we significantly gained in solid angle of an atomic beam, which is affected by MOT laser beams, and reached 1 million atoms loaded directly in the MOT with only 15 mW of MOT cooling beams net power. By exploiting Zeeman-like deceleration of atoms with an additional laser beam and tailoring the MOT magnetic field gradient with a small magnetic coil, we demonstrated trapping of up to 13 million atoms. These results show great perspective of the developed setup for realizing a compact high-performance optical atomic clock based on thulium atoms.

2.
Appl Opt ; 60(29): 9151-9159, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623997

RESUMO

The development of an optical clock with ultimate accuracy and stability requires lasers with very narrow linewidths. We present two ultrastable laser systems based on 48-cm-long Fabry-Perot cavities made of ultralow expansion glass in horizontal and vertical configurations operating at 698 nm. Fractional frequency instability of the beat signal between the two lasers reaches 1.6×10-15 at the averaging time of 1 s. We experimentally characterized the contribution of the different noise sources (power fluctuations, residual amplitude modulation, the Doppler noise, and sensitivity to the shock impact) and found that in our case the laser frequency instability to a large extent is determined by an optoelectronic feedback loop. Although the vertical configuration was easier to manufacture and transport, it is much more sensitive to acoustics and horizontal accelerations compared to the horizontal one. Both laser systems were transported over a 60 km distance from the Lebedev Physical Institute to the All-Russian Scientific Research Institute for Physical-Engineering and Radiotechnical Metrology (VNIIFTRI), where they serve as local oscillators for spectroscopy of the clock transition in the recently developed strontium optical clock.

3.
Nat Commun ; 10(1): 1724, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979896

RESUMO

One of the key systematic effects limiting the performance of state-of-the-art optical clocks is the blackbody radiation (BBR) shift. Here, we demonstrate unusually low sensitivity of a 1.14 µm inner-shell clock transition in neutral Tm atoms to BBR. By direct polarizability measurements, we infer a differential polarizability of the clock levels of -0.063(30) atomic units corresponding to a fractional frequency BBR shift of only 2.3(1.1) × 10-18 at room temperature. This amount is several orders of magnitude smaller than that of the best optical clocks using neutral atoms (Sr, Yb, Hg) and is competitive with that of ion optical clocks (Al+, Lu+). Our results allow the development of lanthanide-based optical clocks with a relative uncertainty at the 10-17 level.

4.
Opt Express ; 24(15): 17470-85, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464193

RESUMO

We present an active fiber-based retroreflector providing high quality phase-retracing anti-parallel Gaussian laser beams for precision spectroscopy of Doppler sensitive transitions. Our design is well-suited for a number of applications where implementing optical cavities is technically challenging and corner cubes fail to match the demanded requirements, most importantly retracing wavefronts and preservation of the laser polarization. To illustrate the performance of the system, we use it for spectroscopy of the 2S-4P transition in atomic hydrogen and demonstrate an average suppression of the first order Doppler shift to 4 parts in 106 of the full collinear shift. This high degree of cancellation combined with our cryogenic source of hydrogen atoms in the metastable 2S state is sufficient to enable determinations of the Rydberg constant and the proton charge radius with competitive uncertainties. Advantages over the usual Doppler cancellation based on corner cube type retroreflectors are discussed as well as an alternative method using a high finesse cavity.

5.
Opt Lett ; 36(21): 4299-301, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22048397

RESUMO

We report on a low-noise diode laser oscillator at 972 nm actively stabilized to an ultrastable vibrationally and thermally compensated reference cavity. To increase the fraction of laser power in the carrier we designed a 20 cm long external cavity diode laser with an intracavity electro-optical modulator. The fractional power in the carrier reaches 99.9%, which corresponds to an rms phase noise of φ(rms)2=1 mrad2 in 10 MHz bandwidth. Using this oscillator, we recorded 1S-2S spectra in atomic hydrogen and have not observed any significant loss of the excitation efficiency due to phase noise multiplication in the three consecutive two-photon processes.

6.
Opt Lett ; 34(19): 2955-7, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794780

RESUMO

We demonstrate laser slowing of a hot thulium atomic beam using the nearly closed cycling transition 4f(13)6s(2)((2)F(o))(J=7/2)<-->4f(12)((3)H(5))5d(3/2)6s(2)(J=9/2) at 410.6 nm. Atoms are decelerated to velocities around 25 m/s by a 40 cm Zeeman slower. The flux of slowed atoms is evaluated as 10(7) s(-1)cm(-2). The experiment explicitly indicates the possibility of trapping Tm atoms in a magneto-optical trap.

7.
Phys Rev Lett ; 102(21): 213002, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519101

RESUMO

An optical measurement of the 2S hyperfine interval in atomic hydrogen using two-photon spectroscopy of the 1S-2S transition gives a value of 177 556 834.3(6.7) Hz. The uncertainty is 2.4 times smaller than achieved by our group in 2003 and more than 4 times smaller than for any independent radio-frequency measurement. The specific combination of the 2S and 1S hyperfine intervals predicted by QED theory 8fHFS(2S)-fHFS(1S)=48 953(3) Hz is in good agreement with the value of 48 923(54) Hz obtained from this experiment.

8.
Philos Trans A Math Phys Eng Sci ; 363(1834): 2155-63, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16147503

RESUMO

Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).


Assuntos
Hidrogênio/análise , Hidrogênio/normas , Sistema Internacional de Unidades/normas , Padrões de Referência , Valores de Referência , Análise Espectral/métodos , Análise Espectral/normas , Internacionalidade , Lasers , Física/normas , Teoria Quântica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Phys Rev Lett ; 92(23): 230802, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15245149

RESUMO

We have remeasured the absolute 1S-2S transition frequency nu(H) in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (-29+/-57) Hz for the drift of nu(H) with respect to the ground state hyperfine splitting nu(Cs) in 133Cs. Combining this result with the recently published optical transition frequency in 199Hg+ against nu(Cs) and a microwave 87Rb and 133Cs clock comparison, we deduce separate limits on alpha/alpha=(-0.9+/-2.9) x 10(-15) yr(-1) and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments mu(Rb)/mu(Cs) equal to (-0.5+/-1.7) x 10(-15) yr(-1). The latter provides information on the temporal behavior of the constant of strong interaction.

10.
Phys Rev Lett ; 92(3): 033003, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753870

RESUMO

We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...