Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15457-15478, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483821

RESUMO

The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.


Assuntos
Antineoplásicos , Neoplasias da Mama , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Feminino , Linhagem Celular Tumoral , Carbono/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Férricos/farmacologia , Antineoplásicos/farmacologia , Autofagia , Nanopartículas Magnéticas de Óxido de Ferro
2.
Biomater Adv ; 153: 213582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591178

RESUMO

The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.


Assuntos
Neoplasias Ósseas , Quercetina , Humanos , Quercetina/farmacologia , Flavonoides , Apoptose , Disponibilidade Biológica
3.
Sci Rep ; 13(1): 7860, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188707

RESUMO

Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Polímeros , Polietilenoglicóis/química , Hipertermia Induzida/métodos
4.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563084

RESUMO

The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite-the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.


Assuntos
Durapatita , Nanotubos de Carbono , Materiais Biocompatíveis/farmacologia , Osso e Ossos , Durapatita/química , Escherichia coli , Nanotubos de Carbono/química
5.
Materials (Basel) ; 14(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947399

RESUMO

In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the ΔGamoprh with a minimum value at 0.6% of Cu was predicted. The ΔGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same ΔGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300-330 °C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2-3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several α-Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains' coarsening of the α-Fe phase that strongly enhances the ferromagnetic exchange between the α-Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material.

6.
Materials (Basel) ; 14(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34576465

RESUMO

The spontaneous oxidation of a magnetite surface and shape design are major aspects of synthesizing various nanostructures with unique magnetic and electrical properties, catalytic activity, and biocompatibility. In this article, the roles of different organic modifiers on the shape and formation of an oxidized layer composed of maghemite were discussed and described in the context of magnetic and electrical properties. It was confirmed that Fe3O4 nanoparticles synthesized in the presence of triphenylphosphine could be characterized by cuboidal shape, a relatively low average particle size (9.6 ± 2.0 nm), and high saturation magnetization equal to 55.2 emu/g. Furthermore, it has been confirmed that low-frequency conductivity and dielectric properties are related to surface disordering and oxidation. The electric energy storage possibility increased for nanoparticles with a disordered and oxidized surface, whereas the dielectric losses in these particles were strongly related to their size. The cuboidal magnetite nanoparticles synthesized in the presence of triphenylphosphine had an ultrahigh electrical conductivity (1.02 × 10-4 S/cm at 10 Hz) in comparison to the spherical ones. At higher temperatures, the maghemite content altered the behavior of electrons. The electrical conductivity can be described by correlated barrier hopping or overlapping large polaron tunneling. Interestingly, the activation energies of electrons transport by the surface were similar for all the analyzed nanoparticles in low- and high-temperature ranges.

7.
Materials (Basel) ; 14(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205771

RESUMO

In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with Fe84.5-xCoxNb5B8.5P2 (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline Fe64.5Co20Nb5B8.5P2 cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment.

8.
Materials (Basel) ; 14(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557314

RESUMO

The effect of substitution of Fe by Cu on the crystal structure and magnetic properties of Fe72-xNi8Nb4CuxSi2B14 alloys (x = 0.6, 1.1, 1.6 at.%) in the form of ribbons was investigated. The chemical composition of the materials was established on the basis of the calculated minima of thermodynamic parameters: Gibbs free energy of amorphous phase formation ΔGamorph (minimum at 0.6 at.% of Cu) and Gibbs free energy of mixing ΔGmix (minimum at 1.6 at.% of Cu). The characteristic crystallization temperatures Tx1onset and Tx1 of the alpha-iron phase together with the activation energy Ea for the as-spun samples were determined by differential scanning calorimetry (DSC) with a heating rate of 10-100 °C/min. In order to determine the optimal soft magnetic properties, the wound cores were subjected to a controlled isothermal annealing process in the temperature range of 340-640 °C for 20 min. Coercivity Hc, saturation induction Bs and core power losses at B = 1 T and frequency f = 50 Hz P10/50 were determined for all samples. Moreover, for the samples with the lowest Hc and P10/50, the magnetic losses were determined in a wider frequency range 50 Hz-400 kHz. The real and imaginary parts of the magnetic permeability µ', µâ€³ along with the cut-off frequency were determined for the samples annealed at 360, 460, and 560 °C. The best soft magnetic properties (i.e., the lowest value of Hc and P10/50) were observed for samples annealed at 460 °C, with Hc = 4.88-5.69 A/m, Bs = 1.18-1.24 T, P10/50 = 0.072-0.084 W/kg, µ' = 8350-10,630 and cutoff frequency at 8-9.3 × 104 Hz. The structural study of as-spun and annealed ribbons was carried out using X-ray diffraction (XRD) and a transmission electron microscope (TEM).

9.
Eur J Pharmacol ; 892: 173766, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33249074

RESUMO

Reconstruction of large cavities in the skull and facial regions is important not only to restore health but also for the correction of facial distortions. Every visible deformity in the facial region of the patient affects their mental wellness and perception by society, entailing both, deterioration of health, but also a decrease in the performance in society, which translates into its productivity. With the progressive degradation of the natural environment, cancer, in the coming years, will be on the leading causes of morbidity and mortality. The review focuses on two main aspects: (i) the causes of injuries leading to the necessity of removal of orbital cavities occupied by the tumor and then their reconstruction, with the focus on the anatomical structure of the orbital cavity, (ii) the materials used to reconstruct the orbital cavities and analyze their advantages and disadvantages. The manuscript also underlines the not yet fully met challenges in the area of facial- and craniofacial reconstruction in people affected by cancer.


Assuntos
Substitutos Ósseos/uso terapêutico , Transplante Ósseo , Traumatismos Oculares/cirurgia , Órbita/cirurgia , Neoplasias Orbitárias/cirurgia , Procedimentos de Cirurgia Plástica/instrumentação , Animais , Substitutos Ósseos/efeitos adversos , Transplante Ósseo/efeitos adversos , Traumatismos Oculares/diagnóstico por imagem , Traumatismos Oculares/patologia , Humanos , Órbita/diagnóstico por imagem , Órbita/lesões , Órbita/patologia , Neoplasias Orbitárias/diagnóstico por imagem , Neoplasias Orbitárias/patologia , Desenho de Prótese , Procedimentos de Cirurgia Plástica/efeitos adversos , Resultado do Tratamento
10.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375057

RESUMO

The complex structural and magnetic studies of the annealed rapidly quenched Cu-free Fe72Ni8Nb4Si2B14 alloy (metallic ribbons form) are reported here. Based on the calorimetric results, the conventional heat treatment process (with heating rate 10 °C/min and subsequent isothermal annealing for 20 min) for wound toroidal cores has been optimized to obtain the least lossy magnetic properties (for the minimum value of coercivity and magnetic core losses at 50 Hz). For optimal conditions, the complex permeability in the 104-108 Hz frequency range together with core power losses obtained from magnetic induction dependence up to the frequency of 400 kHz was successfully measured. The average and local crystal structure was investigated by the use of the X-ray diffraction method and the transmission electron microscopy observations and proved its fully glassy state. Additionally, for the three temperature values, i.e., 310, 340 and 370 °C, the glass relaxation process study in the function of annealing time was carried out to obtain a deeper insight into the soft magnetic properties: magnetic permeability and cut-off frequency. For this type of Cu-free soft magnetic materials, the control of glass relaxation process (time and temperature) is extremely important to obtain proper magnetic properties.

11.
Materials (Basel) ; 13(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348588

RESUMO

The paper presents studies of microstructure, magnetic and corrosion properties of the Gd58Ge20Si22, Gd56Ge20Si22Co2, Gd56Ge20Si22Ti2 and Gd56Ge20Si22Cr2 (at.%) alloys after isothermal heat treatment at 1450 K for 2 h. The structure investigations of the produced materials performed by X-ray diffraction show the presence of Gd5Ge2Si2-type phase in all investigated samples. DC and AC magnetic measurements confirmed that the Curie temperature depends on the chemical composition of the produced alloys. From M(T) characteristics, it was found that the lowest Curie point (TC = 268 K) was estimated for the Gd58Ge20Si22 sample, whereas the highest value of the Curie temperature (TC = 308 K) was for the Gd56Ge20Si22Cr2 alloys. Moreover, the GdGeSi alloy without alloying additions shows the highest magnetic entropy change |ΔSM| = 15.07 J⋅kg-1⋅K-1 for the maximum magnetic field of 2 T. The maximum |ΔSM| measured for the Gd56Ge20Si22 with the addition of Co, Ti or Cr for the same magnetic field was obtained in the vicinity of the Curie point and equals to 2.92, 2.73 and 2.95 J⋅kg-1⋅K-1, respectively. Electrochemical studies of the produced materials for 60 min and 55 days exposure in 3% NaCl solution show that the highest stability and corrosion resistance were exhibited the sample with added of Ti.

12.
Materials (Basel) ; 13(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252251

RESUMO

In this work, a detailed microstructural investigation of as-melt-spun and heat-treated Fe67Co20B13 ribbons was performed. The as-melt-spun ribbon was predominantly amorphous at room temperature. Subsequent heating demonstrated an amorphous to crystalline α-(Fe,Co) phase transition at 403 °C. In situ transmission electron microscopy observations, carried out at the temperature range of 25-500 °C and with the heating rate of 200 °C/min, showed that the first crystallized nuclei appeared at a temperature close to 370 °C. With a further increase of temperature, the volume of α-(Fe,Co) crystallites considerably increased. Moreover, the results showed that a heating rate of 200 °C/min provides for a fine and homogenous microstructure with the α-(Fe,Co) crystallites size three times smaller than when the ribbon is heated at 20 °C/min. The next step of this research concerned the influence of both the annealing time and temperature on the microstructure and coercivity of the ribbons. It was shown that annealing at 485 °C for a shorter time (2 s) led to materials with homogenous distribution of α-(Fe,Co) crystallites with a mean size of 30 nm dispersed in the residual amorphous matrix. This was reflected in the coercivity (20.5 A/m), which significantly depended on the volume fraction of crystallites, their size, and distribution.

13.
Materials (Basel) ; 13(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32209972

RESUMO

Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe86-xCuxB14 (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemical composition has been optimized using a thermodynamic approach to obtain a minimum of Gibbs free energy of amorphous phase formation (minimum at 0.55 at.% of Cu). By using differential scanning calorimetry method the crystallization kinetics of amorphous melt-spun ribbons was analyzed. It was found that the average activation energy of α-Fe phase crystallization is in the range from 201.8 to 228.74 kJ/mol for studied samples. In order to obtain the lowest power core loss values, the isothermal annealing process was optimized in the temperature range from 260 °C to 400 °C. Materials annealed at optimal temperature had power core losses at 1 T/50 Hz-0.13-0.25 W/kg, magnetic saturation-1.47-1.6 T and coercivity-9.71-13.1 A/m. These samples were characterized by the amorphous structure with small amount of α-Fe nanocrystallites. The studies of complex permeability allowed to determine a minimum of both permeability values at 0.55 at.% of Cu. At the end of this work a correlation between thermodynamic parameters and kinetics, structure and magnetic properties were described.

14.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092947

RESUMO

The effects of Co for Fe substitution on magnetic properties, thermal stability and crystal structure of Fe85.45-xCoxCu0.55B14 (x = 0, 2.5, 5, 7.5, 10) melt spun amorphous alloys were investigated. The Cu content was firstly optimized to minimize the energy of amorphous phase formation by the use of a thermodynamic approach. The formation of crystalline α-Fe type phase has been described using differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. The classical heat treatment process (with heating rate 10 °C/min) in vacuum for wound toroidal cores was optimized in the temperature range from 280 to 430 °C in order to obtain the best magnetic properties (magnetic saturation Bs and coercivity Hc obtained from the B(H) dependencies) at 50 Hz frequency. For optimal heat-treated samples, the complex magnetic permeability in the frequencies 104-108 Hz at room temperature was measured. Finally, magnetic core losses were obtained for 1 T/50 Hz and 1.5 T/50 Hz values for samples annealed at T = 310 °C. An analysis of transmission electron microscope images and electron diffraction patterns confirmed that high magnetic parameters are related to the coexistence of the amorphous and nanocrystalline phases.

15.
Nanomaterials (Basel) ; 9(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621188

RESUMO

We have tested titanium (Ti) plates that are used for bone reconstruction in maxillofacial surgery, in combination with five types of novel long-resorbable biomaterials: (i) PCL0-polycaprolactone without additives, (ii) PCLMWCNT-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT), (iii) PCLOH-polycaprolactone doped with multiwall carbon nanotubes (MWCNT) containing ⁻OH hydroxyl groups, (iv) PCLCOOH-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT) containing carboxyl groups, and (v) PCLTI-polycaprolactone with the addition of Ti nanoparticles. The structure and properties of the obtained materials have been examined with the use of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and/or X-ray powder diffraction (XRD). Titanium BR plates have been covered with: (i) PCL0 fibers (PCL0BR-connection plates), (ii) PCLMWCNT fibers (PCLMWCNTBR-plates), (iii) PCLOH fibers (PCLOHBR-plates), (iv) PCLCOOH (PCLCOOHBR-plates), (v) PCLTI fiber (PCLTIBR-connection plates). Such modified titanium plates were exposed to X-ray doses corresponding to those applied in head and neck tumor treatment. The potential leaching of toxic materials upon the irradiation of such modified titanium plates, and their effect on normal human dermal fibroblasts (NHDF) have been assessed by MTT assay. The presented results show variable biological responses depending on the modifications to titanium plates.

16.
Materials (Basel) ; 10(5)2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28772889

RESUMO

Intermetallic compounds with the overall formula Mn1.1Fe0.9P0.5As0.5-xGex (x varies from 0 to 0.1) were investigated in order to study their magnetocaloric effect by monitoring the adiabatic temperature change, magnetic entropy change and their relation to structural parameters. It was found that the maximum of magnetocaloric effect was achieved for x = 0.02. Adiabatic temperature change for consolidated powder was equal to 2.75 K for the magnetic field change ΔB = 1.7 T for the sample with x = 0.02. For the pure non-doped sample, this parameter is much lower: ΔTad = 1.7 K @ ΔB = 1.7 T. This result was correlated with the change of structural parameters such as lattice constants and the unit cell volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...