Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Mol Psychiatry ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561467

RESUMO

The intricate involvement of the serotonin 5-HT2A receptor (5-HT2AR) both in schizophrenia and in the activity of antipsychotic drugs is widely acknowledged. The currently marketed antipsychotic drugs, although effective in managing the symptoms of schizophrenia to a certain extent, are not without their repertoire of serious side effects. There is a need for better therapeutics to treat schizophrenia for which understanding the mechanism of action of the current antipsychotic drugs is imperative. With bioluminescence resonance energy transfer (BRET) assays, we trace the signaling signature of six antipsychotic drugs belonging to three generations at the 5-HT2AR for the entire spectrum of signaling pathways activated by serotonin (5-HT). The antipsychotic drugs display previously unidentified pathway preference at the level of the individual Gα subunits and ß-arrestins. In particular, risperidone, clozapine, olanzapine and haloperidol showed G protein-selective inverse agonist activity. In addition, G protein-selective partial agonism was found for aripiprazole and cariprazine. Pathway-specific apparent dissociation constants determined from functional analyses revealed distinct coupling-modulating capacities of the tested antipsychotics at the different 5-HT-activated pathways. Computational analyses of the pharmacological and structural fingerprints support a mechanistically based clustering that recapitulate the clinical classification (typical/first generation, atypical/second generation, third generation) of the antipsychotic drugs. The study provides a new framework to functionally classify antipsychotics that should represent a useful tool for the identification of better and safer neuropsychiatric drugs and allows formulating hypotheses on the links between specific signaling cascades and in the clinical outcomes of the existing drugs.

2.
Arch Pharm (Weinheim) ; 357(5): e2300636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332463

RESUMO

Virtual combinatorial libraries are prevalent in drug discovery due to improvements in the prediction of synthetic reactions that can be performed. This has gone hand in hand with the development of virtual screening capabilities to effectively screen the large chemical spaces spanned by exhaustive enumeration of reaction products. In this study, we generated a small-molecule dipeptide mimic library to target proteins binding small peptides. The library was created based on the general idea of peptide synthesis, that is, amino acid mimics were reacted in silico to form the dipeptide mimics, yielding 2,036,819 unique compounds. After docking calculations, two compounds from the library were synthesized and tested against WD repeat-containing protein 5 (WDR5) and histamine receptors H1-H4 to evaluate whether these molecules are viable in assays. The compounds showed the highest potency at the histamine H3 receptor, with Ki values in the two-digit micromolar range.


Assuntos
Dipeptídeos , Bibliotecas de Moléculas Pequenas , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Simulação de Acoplamento Molecular , Humanos , Relação Estrutura-Atividade , Receptores Histamínicos/metabolismo , Descoberta de Drogas , Estrutura Molecular
3.
Nat Commun ; 15(1): 1831, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418462

RESUMO

Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.


Assuntos
Escherichia coli , Histamina , Humanos , Histamina/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Escherichia coli/metabolismo , Receptores Histamínicos H2/metabolismo
4.
Chembiochem ; 25(2): e202300659, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942961

RESUMO

The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.


Assuntos
Dopamina , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Antagonistas de Dopamina/farmacologia , Ligantes , Ensaio Radioligante , Corantes
5.
Chembiochem ; 25(2): e202300658, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983731

RESUMO

Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.


Assuntos
Corantes Fluorescentes , Receptores de Dopamina D1 , Receptores de Dopamina D1/metabolismo , Ligantes , Fluorescência
7.
Elife ; 122023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983079

RESUMO

The µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties of receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and the resulting effects is important. Here, we calculated the respective binding poses for several opioids and analyzed interaction fingerprints between ligand and receptor. We further corroborated the interactions experimentally by cellular assays. As MOR was observed to display ligand-induced modulation of activity due to changes in membrane potential, we further analyzed the effects of voltage sensitivity on this receptor. Combining in silico and in vitro approaches, we defined discriminating interaction patterns responsible for ligand-specific voltage sensitivity and present new insights into their specific effects on activation of the MOR.


Assuntos
Analgésicos Opioides , Receptores Opioides , Humanos , Analgésicos Opioides/farmacologia , Ligantes , Receptores Opioides mu/metabolismo , Dor
8.
J Med Chem ; 66(21): 15025-15041, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37907069

RESUMO

The orphan G protein-coupled receptor (oGPCR) GPR3 represents a potential drug target for the treatment of Alzheimer's disease and metabolic disorders. However, the limited toolbox of pharmacological assays hampers the development of advanced ligands. Here, we developed a signaling pathway-independent readout of compound-GPR3 interaction. Starting from computational binding pose predictions of the most potent GPR3 ligand, we designed a series of fluorescent AF64394 analogues and assessed their suitability for BRET-based binding studies. The most potent ligand, 45 (UR-MB-355), bound to GPR3 and closely related receptors, GPR6 and GPR12, with similar submicromolar affinities. Furthermore, we found that 45 engages GPR3 in a distinct mode compared to AF64394, and coincubation studies with the GPR3 agonist diphenyleneiodonium chloride revealed allosteric modulation of 45 binding. These insights provide new cues for the pharmacological manipulation of GPR3 activity. This novel binding assay will foster the development of future drugs acting through these pharmacologically attractive oGPCRs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
9.
Mol Pharmacol ; 104(3): 80-91, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442628

RESUMO

Prostaglandins are important lipid mediators with a wide range of functions in the human body. They act mainly via plasma membrane localized prostaglandin receptors, which belong to the G-protein coupled receptor class. Due to their localized formation and short lifetime, it is important to be able to measure the distribution and abundance of prostaglandins in time and/or space. In this study, we present a Foerster resonance energy transfer (FRET)-based conformation sensor of the human prostaglandin E receptor subtype 4 (EP4 receptor), which was capable of detecting prostaglandin E2 (PGE2)-induced receptor activation in the low nanomolar range with a good signal-to-noise ratio. The sensor retained the typical selectivity for PGE2 among arachidonic acid products. Human embryonic kidney cells stably expressing the sensor did not produce detectable amounts of prostaglandins making them suitable for a coculture approach allowing us, over time, to detect prostaglandin formation in Madin-Darby canine kidney cells and primary mouse macrophages. Furthermore, the EP4 receptor sensor proved to be suited to detect experimentally generated PGE2 gradients by means of FRET-microscopy, indicating the potential to measure gradients of PGE2 within tissues. In addition to FRET-based imaging of prostanoid release, the sensor allowed not only for determination of PGE2 concentrations, but also proved to be capable of measuring ligand binding kinetics. The good signal-to-noise ratio at a commercial plate reader and the ability to directly determine ligand efficacy shows the obvious potential of this sensor interest for screening and characterization of novel ligands of the pharmacologically important human EP4 receptor. SIGNIFICANCE STATEMENT: The authors present a biosensor based on the prostaglandin E receptor subtype 4, which is well suited to measure extracellular prostaglandin E2 (PGE2) concentration with high temporal and spatial resolution. It can be used for the imaging of PGE2 levels and gradients by means of Foerster resonance energy transfer microscopy, and for determining PGE2 release of primary cells as well as for screening purposes in a plate reader setting.


Assuntos
Dinoprostona , Prostaglandinas , Camundongos , Animais , Cães , Humanos , Ligantes , Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina , Receptores de Prostaglandina E Subtipo EP2/metabolismo
10.
Eur J Med Chem ; 257: 115498, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290182

RESUMO

Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 µM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 µM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Cisteína Endopeptidases/farmacologia , Doença de Chagas/tratamento farmacológico , Proteínas de Protozoários
11.
J Comput Aided Mol Des ; 37(7): 313-323, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37312012

RESUMO

Computer-aided approaches to ligand design need to balance accuracy with speed. This is particularly true for one of the key parameters to be optimized during ligand development, the free energy of binding ([Formula: see text]G[Formula: see text]). Here, we developed simple models based on the Linear Interaction Energy approximation to free energy calculation for a G protein-coupled receptor, the serotonin receptor 2A, and critically evaluated their accuracy. Several lessons can be taken from our calculations, providing information on the influence of the docking software used, the conformational state of the receptor, the cocrystallized ligand, and its comparability to the training/test ligands.


Assuntos
Serotonina , Software , Ligantes , Entropia , Receptores de Serotonina
12.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838725

RESUMO

Extra virgin olive oil (EVOO) possesses a high-value rank in the food industry, thus making it a common target for adulteration. Hence, several methods have been essentially made available over the years. However, the issue of authentication remains unresolved with national and food safety organizations globally struggling to regulate and control its market. Over the course of this study, the aim was to determine the origin of EVOOs suggesting a high-throughput, state-of-the-art method that could be easily adopted. A rapid, NMR-based untargeted metabolite profiling method was applied and complemented by multivariate analysis (MVA) and statistical total correlation spectroscopy (STOCSY). STOCSY is a valuable statistical tool contributing to the biomarker identification process and was employed for the first time in EVOO analysis. Market samples from three Mediterranean countries of Spain, Italy, and Greece, blended samples from these countries, as well as monocultivar samples from Greece were analyzed. The NMR spectra were collected, with the help of chemometrics acting as "fingerprints" leading to the discovery of certain chemical classes and single biomarkers that were related to the classification of the samples into groups based on their origin.


Assuntos
Azeite de Oliva , Azeite de Oliva/química , Espectroscopia de Ressonância Magnética , Análise Multivariada , Itália , Espanha
13.
Eur J Med Chem ; 245(Pt 1): 114914, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36410167

RESUMO

In this study, fragment-sized hits binding to Pim-1 kinase with initially modest affinity were further optimized by combining computational, synthetic and crystallographic expertise, eventually resulting in potent ligands with affinities in the nanomolar range that address rarely-targeted regions of Pim-1 kinase. Starting from a set of crystallographically validated, chemically distinct fragments that bind to Pim-1 kinase but lack typical nucleotide mimetic structures, a library of extended fragments was built by exhaustive in silico reactions. After docking, minimization, clustering, visual inspection of the top-ranked compounds, and evaluation of ease of synthetic accessibility, either the original compound or a close derivative was synthesized and tested against Pim-1. For compounds showing the highest degree of Pim-1 inhibition the binding mode was determined crystallographically. Following a structure-guided approach, these were further optimized in a subsequent design cycle improving the compound's initial affinity by several orders of magnitude while synthesizing only a comparatively modest number of derivatives. The combination of computational and experimental approaches resulted in the development of a reasonably potent, novel molecular scaffold for inhibition of Pim-1 that targets specific surface regions, such as the interaction with R122 and P123 of the hinge region, which has been less frequently investigated in similar studies.


Assuntos
Nucleotídeos , Proteínas Proto-Oncogênicas c-pim-1 , Análise por Conglomerados , Cristalografia
14.
Mol Pharmacol ; 103(2): 89-99, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36351797

RESUMO

Known off-target interactions frequently cause predictable drug side-effects (e.g., ß1-antagonists used for heart disease, risk ß2-mediated bronchospasm). Computer-aided drug design would improve if the structural basis of existing drug selectivity was understood. A mutagenesis approach determined the ligand-amino acid interactions required for ß1-selective affinity of xamoterol and nebivolol, followed by computer-based modeling to provide possible structural explanations. 3H-CGP12177 whole cell binding was conducted in Chinese hamster ovary cells stably expressing human ß1, ß2, and chimeric ß1/ß2-adrenoceptors (ARs). Single point mutations were investigated in transiently transfected cells. Modeling studies involved docking ligands into three-dimensional receptor structures and performing molecular dynamics simulations, comparing interaction frequencies between apo and holo structures of ß1 and ß2-ARs. From these observations, an ICI89406 derivative was investigated that gave further insights into selectivity. Stable cell line studies determined that transmembrane 2 was crucial for the ß1-selective affinity of xamoterol and nebivolol. Single point mutations determined that the ß1-AR isoleucine (I118) rather than the ß2 histidine (H93) explained selectivity. Studies of other ß1-ligands found I118 was important for ICI89406 selective affinity but not that for betaxolol, bisoprolol, or esmolol. Modeling studies suggested that the interaction energies and solvation of ß1-I118 and ß2-H93 are factors determining selectivity of xamoterol and ICI89406. ICI89406 without its phenyl group loses its high ß1-AR affinity, resulting in the same affinity as for the ß2-AR. The human ß1-AR residue I118 is crucial for the ß1-selective affinity of xamoterol, nebivolol, and ICI89406 but not all ß1-selective compounds. SIGNIFICANCE STATEMENT: Some ligands have selective binding affinity for the human ß1 versus the ß2-adrenoceptor; however, the molecular/structural reason for this is not known. The transmembrane 2 residue isoleucine I118 is responsible for the selective ß1-binding of xamoterol, nebivolol, and ICI89406 but does not explain the selective ß1-binding of betaxolol, bisoprolol, or esmolol. Understanding the structural basis of selectivity is important to improve computer-aided ligand design, and targeting I118 in ß1-adrenoceptors is likely to increase ß1-selectivity of drugs.


Assuntos
Antagonistas Adrenérgicos beta , Bisoprolol , Animais , Cricetinae , Humanos , Xamoterol , Nebivolol/farmacologia , Antagonistas Adrenérgicos beta/metabolismo , Isoleucina , Agonistas Adrenérgicos beta , Betaxolol , Células CHO , Ligantes , Cricetulus , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 1/química
15.
Nat Commun ; 13(1): 7109, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402762

RESUMO

Carvedilol is among the most effective ß-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of ß1-adrenoceptors, arrestin-biased signalling via ß2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through ß2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the ß-adrenoceptor system.


Assuntos
Antagonistas Adrenérgicos beta , Infarto do Miocárdio , Humanos , Carvedilol/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Receptores Adrenérgicos beta 2/genética , Infarto do Miocárdio/tratamento farmacológico
16.
J Biol Chem ; 298(9): 102328, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933013

RESUMO

Within the intestine, the human G protein-coupled receptor (GPCR) GPR35 is involved in oncogenic signaling, bacterial infections, and inflammatory bowel disease. GPR35 is known to be expressed as two distinct isoforms that differ only in the length of their extracellular N-termini by 31 amino acids, but detailed insights into their functional differences are lacking. Through gene expression analysis in immune and gastrointestinal cells, we show that these isoforms emerge from distinct promoter usage and alternative splicing. Additionally, we employed optical assays in living cells to thoroughly profile both GPR35 isoforms for constitutive and ligand-induced activation and signaling of 10 different heterotrimeric G proteins, ligand-induced arrestin recruitment, and receptor internalization. Our results reveal that the extended N-terminus of the long isoform limits G protein activation yet elevates receptor-ß-arrestin interaction. To better understand the structural basis for this bias, we examined structural models of GPR35 and conducted experiments with mutants of both isoforms. We found that a proposed disulfide bridge between the N-terminus and extracellular loop 3, present in both isoforms, is crucial for constitutive G13 activation, while an additional cysteine contributed by the extended N-terminus of the long GPR35 isoform limits the extent of agonist-induced receptor-ß-arrestin2 interaction. The pharmacological profiles and mechanistic insights of our study provide clues for the future design of isoform-specific GPR35 ligands that selectively modulate GPR35-transducer interactions and allow for mechanism-based therapies against, for example, inflammatory bowel disease or bacterial infections of the gastrointestinal system.


Assuntos
Receptores Acoplados a Proteínas G , Regulação Alostérica , Cisteína/química , Dissulfetos/química , Proteínas de Ligação ao GTP/química , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Ligantes , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
17.
Pharmacol Ther ; 237: 108242, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863587

RESUMO

G protein-coupled receptors (GPCRs) play critical roles in human physiology and are one of the prime targets for marketed drugs. While traditional drug discovery programs have focused on the development of ligands targeting the binding site of endogenous ligands (orthosteric site), allosteric modulators offer new avenues for the regulation of GPCR function with potential therapeutic benefits. Recent advances in the structure determination of GPCRs bound to different types of allosteric modulators have led to the identification of multiple allosteric sites and significantly enhanced our understanding of how allosteric ligands interact with receptors. These structural insights, together with the plethora of GPCR structures available today, will facilitate structure-based discovery and development of allosteric modulators as novel therapeutic candidates. In this review, we provide a systematic analysis of the currently available GPCR structures in complex with small-molecule allosteric ligands in terms of the location of allosteric pockets, receptor-ligand interactions, and the chemical features of the allosteric modulators. In addition, we summarize current strategies for the identification of allosteric sites as well as ligand-based and structure-based drug discovery and design.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Regulação Alostérica , Sítio Alostérico , Desenho de Fármacos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
18.
Nat Commun ; 13(1): 2567, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538063

RESUMO

G-protein-coupled receptors do not only feature the orthosteric pockets, where most endogenous agonists bind, but also a multitude of other allosteric pockets that have come into the focus as potential binding sites for synthetic modulators. Here, to better characterise such pockets, we investigate 557 GPCR structures by exhaustively docking small molecular probes in silico and converting the ensemble of binding locations to pocket-defining volumes. Our analysis confirms all previously identified pockets and reveals nine previously untargeted sites. In order to test for the feasibility of functional modulation of receptors through binding of a ligand to such sites, we mutate residues in two sites, in two model receptors, the muscarinic acetylcholine receptor M3 and ß2-adrenergic receptor. Moreover, we analyse the correlation of inter-residue contacts with the activation states of receptors and show that contact patterns closely correlating with activation indeed coincide with these sites.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Muscarínicos , Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Sítios de Ligação , Ligantes , Receptores Acoplados a Proteínas G/química , Receptores Muscarínicos/metabolismo
19.
Br J Pharmacol ; 179(14): 3651-3674, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106752

RESUMO

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Descoberta de Drogas , Ligantes , Reprodutibilidade dos Testes
20.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851820

RESUMO

G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses - termed bias - potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/fisiologia , beta-Arrestina 2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...