Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696296

RESUMO

OBJECTIVE: We present a model-based image reconstruction approach based on unrolled neural networks which corrects for image distortion and noise in low-field ( B0  âˆ¼  50mT) MRI. METHODS: Utilising knowledge about the underlying physics, a novel network architecture (SH-Net) is introduced which involves the estimation of spherical harmonic coefficients to guarantee a spatially smooth field map estimate. The SH-Net is integrated in an end-to-end trainable model which jointly estimates the B0-field map as well as the image. Experiments were conducted on retrospectively simulated low-field data of human knees. RESULTS: We compare our model to different model-based approaches at distinct noise levels and various B0-field distributions. Our results show that our physics-informed neural network approach outperforms the purely model-based methods by improving the PSNR up to 11.7% and the RMSE up to 86.3%. CONCLUSION: Our end-to-end trained model-based approach outperforms existing methods in reconstructing image and B0-field maps in the low-field regime. SIGNIFICANCE: low-field MRI is becoming increasingly more popular as it enables access to MR in challenging situations such as intensive care units or resource poor areas. Our method allows for fast and accurate image reconstruction in such low-field imaging with B0-inhomogeneity compensation under a wide range of various environmental conditions.

2.
J Med Imaging (Bellingham) ; 11(2): 024013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38666039

RESUMO

Purpose: To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid-attenuated inversion recovery magnetic resonance imaging protocols. Approach: The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations. Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art multiple sclerosis lesion segmentation networks to explore a generic model function to describe the F1 score in dependence of the contrast-affecting sequence parameters echo time (TE) and inversion time (TI). Results: The differences between real and simulated images range up to 19% in gray and white matter for extreme parameter settings. For the segmentation networks under test, the F1 score dependency on TE and TI can be well described by quadratic model functions (R2>0.9). The coefficients of the model functions indicate that changes of TE have more influence on the model performance than TI. Conclusions: We show that these deviations are in the range of values as may be caused by erroneous or individual differences in relaxation times as described by literature. The coefficients of the F1 model function allow for a quantitative comparison of the influences of TE and TI. Limitations arise mainly from tissues with a low baseline signal (like cerebrospinal fluid) and when the protocol contains contrast-affecting measures that cannot be modeled due to missing information in the DICOM header.

3.
EBioMedicine ; 102: 105055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490103

RESUMO

BACKGROUND: In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation approach. METHODS: Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight different sequences. The regression model type and four other adjustable standardisation parameters were optimised among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135 patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to evaluate the diagnostic accuracy. FINDINGS: The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% / 91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and AMY. INTERPRETATION: Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while keeping the discrimination of healthy and patient groups as found in literature. FUNDING: This study was supported by the BMBF / DZHK.


Assuntos
Cardiomiopatia Hipertrófica , Coração , Humanos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cardiomiopatia Hipertrófica/patologia , Espectroscopia de Ressonância Magnética , Padrões de Referência , Miocárdio/patologia , Valor Preditivo dos Testes , Meios de Contraste
4.
Phys Med Biol ; 69(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479021

RESUMO

Objective. To provide three-dimensional (3D) whole-heart high-resolution isotropic cardiac T1 maps using a k-space-based through-plane super-resolution reconstruction (SRR) with rotated multi-slice stacks.Approach. Due to limited SNR and cardiac motion, often only 2D T1 maps with low through-plane resolution (4-8 mm) can be obtained. Previous approaches used SRR to calculate 3D high-resolution isotropic cardiac T1 maps. However, they were limited to the ventricles. The proposed approach acquires rotated stacks in long-axis orientation with high in-plane resolution but low through-plane resolution. This results in radially overlapping stacks from which high-resolution T1 maps of the whole heart are reconstructed using a k-space-based SRR framework considering the complete acquisition model. Cardiac and residual respiratory motion between different breath holds is estimated and incorporated into the reconstruction. The proposed approach was evaluated in simulations and phantom experiments and successfully applied to ten healthy subjects.Main results. 3D T1 maps of the whole heart were obtained in the same acquisition time as previous methods covering only the ventricles. T1 measurements were possible even for small structures, such as the atrial wall. The proposed approach provided accurate (P> 0.4;R2> 0.99) and precise T1 values (SD of 64.32 ± 22.77 ms in the proposed approach, 44.73 ± 31.9 ms in the reference). The edge sharpness of the T1 maps was increased by 6.20% and 4.73% in simulation and phantom experiments, respectively. Contrast-to-noise ratios between the septum and blood pool increased by 14.50% inin vivomeasurements with a k-space compared to an image-space-based SRR.Significance. The proposed approach provided whole-heart high-resolution 1.3 mm isotropic T1 maps in an overall acquisition time of approximately three minutes. Small structures, such as the atrial and right ventricular walls, could be visualized in the T1 maps.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Suspensão da Respiração , Átrios do Coração , Imagens de Fantasmas , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 91(5): 1994-2009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174601

RESUMO

PURPOSE: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times. METHODS: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments. RESULTS: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution. CONCLUSION: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.


Assuntos
Estenose da Valva Aórtica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Imagens de Fantasmas , Artefatos , Velocidade do Fluxo Sanguíneo , Imageamento Tridimensional/métodos
6.
Int J Comput Assist Radiol Surg ; 19(3): 553-569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37679657

RESUMO

PURPOSE: Numerical phantom methods are widely used in the development of medical imaging methods. They enable quantitative evaluation and direct comparison with controlled and known ground truth information. Cardiac magnetic resonance has the potential for a comprehensive evaluation of the mitral valve (MV). The goal of this work is the development of a numerical simulation framework that supports the investigation of MRI imaging strategies for the mitral valve. METHODS: We present a pipeline for synthetic image generation based on the combination of individual anatomical 3D models with a position-based dynamics simulation of the mitral valve closure. The corresponding images are generated using modality-specific intensity models and spatiotemporal sampling concepts. We test the applicability in the context of MRI imaging strategies for the assessment of the mitral valve. Synthetic images are generated with different strategies regarding image orientation (SAX and rLAX) and spatial sampling density. RESULTS: The suitability of the imaging strategy is evaluated by comparing MV segmentations against ground truth annotations. The generated synthetic images were compared to ones acquired with similar parameters, and the result is promising. The quantitative analysis of annotation results suggests that the rLAX sampling strategy is preferable for MV assessment, reaching accuracy values that are comparable to or even outperform literature values. CONCLUSION: The proposed approach provides a valuable tool for the evaluation and optimization of cardiac valve image acquisition. Its application to the use case identifies the radial image sampling strategy as the most suitable for MV assessment through MRI.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Humanos , Valva Mitral/diagnóstico por imagem , Simulação por Computador , Insuficiência da Valva Mitral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
7.
IEEE Trans Biomed Eng ; 71(2): 388-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37540614

RESUMO

OBJECTIVE: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). METHODS: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method where the employed dictionary learning (DL) and sparse coding (SC) algorithms automatically estimate the optimal dictionary-size and sparsity level separately for each parameter-map. We evaluated the method on a T1-mapping QMRI problem in the brain using the BrainWeb data as well as in-vivo brain images acquired on an ultra-high field 7 T scanner. We compared it to a model-based acceleration for parameter mapping (MAP) approach, other sparsity-based methods using total variation (TV), Wavelets (Wl), and Shearlets (Sh) to a method which uses DL and SC to reconstruct qualitative images, followed by a non-linear (DL+Fit). RESULTS: Our algorithm surpasses MAP, TV, Wl, and Sh in terms of RMSE and PSNR. It yields better or comparable results to DL+Fit by additionally significantly accelerating the reconstruction by a factor of approximately seven. CONCLUSION: The proposed method outperforms the reported methods of comparison and yields accurate T1-maps. Although presented for T1-mapping in the brain, our method's structure is general and thus most probably also applicable for the the reconstruction of other quantitative parameters in other organs. SIGNIFICANCE: From a clinical perspective, the obtained T1-maps could be utilized to differentiate between healthy subjects and patients with Alzheimer's disease. From a technical perspective, the proposed unsupervised method could be employed to obtain ground-truth data for the development of data-driven methods based on supervised learning.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
8.
NMR Biomed ; : e5052, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986655

RESUMO

Open-source practices and resources in magnetic resonance imaging (MRI) have increased substantially in recent years. This trend started with software and data being published open-source and, more recently, open-source hardware designs have become increasingly available. These developments towards a culture of sharing and establishing nonexclusive global collaborations have already improved the reproducibility and reusability of code and designs, while providing a more inclusive approach, especially for low-income settings. Community-driven standardization and documentation efforts are further strengthening and expanding these milestones. The future of open-source MRI is bright and we have just started to discover its full collaborative potential. In this review we will give an overview of open-source software and open-source hardware projects in human MRI research.

9.
Phys Med Biol ; 68(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820640

RESUMO

Objective. Physiological parameter estimation is affected by intrinsic ambiguity in the data such as noise and model inaccuracies. The aim of this work is to provide a deep learning framework for accurate parameter and uncertainty estimates for DCE-MRI in the liver.Approach. Concentration time curves are simulated to train a Bayesian neural network (BNN). Training of the BNN involves minimization of a loss function that jointly minimizes the aleatoric and epistemic uncertainties. Uncertainty estimation is evaluated for different noise levels and for different out of distribution (OD) cases, i.e. where the data during inference differs strongly to the data during training. The accuracy of parameter estimates are compared to a nonlinear least squares (NLLS) fitting in numerical simulations andin vivodata of a patient suffering from hepatic tumor lesions.Main results. BNN achieved lower root-mean-squared-errors (RMSE) than the NLLS for the simulated data. RMSE of BNN was on overage of all noise levels lower by 33% ± 1.9% forktrans, 22% ± 6% forveand 89% ± 5% forvpthan the NLLS. The aleatoric uncertainties of the parameters increased with increasing noise level, whereas the epistemic uncertainty increased when a BNN was evaluated with OD data. For thein vivodata, more robust parameter estimations were obtained by the BNN than the NLLS fit. In addition, the differences between estimated parameters for healthy and tumor regions-of-interest were significant (p< 0.0001).Significance. The proposed framework allowed for accurate parameter estimates for quantitative DCE-MRI. In addition, the BNN provided uncertainty estimates which highlighted cases of high noise and in which the training data did not match the data during inference. This is important for clinical application because it would indicate cases in which the trained model is inadequate and additional training with an adapted training data set is required.


Assuntos
Algoritmos , Neoplasias Hepáticas , Humanos , Incerteza , Teorema de Bayes , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
10.
Magn Reson Med ; 90(3): 1086-1100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288592

RESUMO

PURPOSE: To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction. METHODS: Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers. RESULTS: The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD. CONCLUSION: We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Miocárdio , Movimento (Física) , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Coração/diagnóstico por imagem , Reprodutibilidade dos Testes
11.
Med Phys ; 50(11): 6955-6977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37367947

RESUMO

BACKGROUND: Cardiac MRI has become the gold-standard imaging technique for assessing cardiovascular morphology and function. In spite of this, its slow data acquisition process presents imaging challenges due to the motion from heartbeats, respiration, and blood flow. In recent studies, deep learning (DL) algorithms have shown promising results for the task of image reconstruction. However, there have been instances where they have introduced artifacts that may be misinterpreted as pathologies or may obscure the detection of pathologies. Therefore, it is important to obtain a metric, such as the uncertainty of the network output, that identifies such artifacts. However, this can be quite challenging for large-scale image reconstruction problems such as dynamic multi-coil non-Cartesian MRI. PURPOSE: To efficiently quantify uncertainties of a physics-informed DL-based image reconstruction method for a large-scale accelerated 2D multi-coil dynamic radial MRI reconstruction problem, and demonstrate the benefits of physics-informed DL over model-agnostic DL in reducing uncertainties while at the same time improving image quality. METHODS: We extended a recently proposed physics-informed 2D U-Net that learns spatio-temporal slices (named XT-YT U-Net), and employed it for the task of uncertainty quantification (UQ) by using Monte Carlo dropout and a Gaussian negative log-likelihood loss function. Our data comprised 2D dynamic MR images acquired with a radial balanced steady-state free precession sequence. The XT-YT U-Net, which allows for training with a limited amount of data, was trained and validated on a dataset of 15 healthy volunteers, and further tested on data from four patients. An extensive comparison between physics-informed and model-agnostic neural networks (NNs) concerning the obtained image quality and uncertainty estimates was performed. Further, we employed calibration plots to assess the quality of the UQ. RESULTS: The inclusion of the MR-physics model of data acquisition as a building block in the NN architecture led to higher image quality (NRMSE: - 33 ± 8.2 % $-33 \pm 8.2 \%$ , PSNR: 6.3 ± 1.3 % $6.3 \pm 1.3 \%$ , and SSIM: 1.9 ± 0.96 % $1.9 \pm 0.96 \%$ ), lower uncertainties ( - 46 ± 8.7 % $-46 \pm 8.7 \%$ ), and, based on the calibration plots, an improved UQ compared to its model-agnostic counterpart. Furthermore, the UQ information can be used to differentiate between anatomical structures (e.g., coronary arteries, ventricle boundaries) and artifacts. CONCLUSIONS: Using an XT-YT U-Net, we were able to quantify uncertainties of a physics-informed NN for a high-dimensional and computationally demanding 2D multi-coil dynamic MR imaging problem. In addition to improving the image quality, embedding the acquisition model in the network architecture decreased the reconstruction uncertainties as well as quantitatively improved the UQ. The UQ provides additional information to assess the performance of different network approaches.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Teorema de Bayes , Redes Neurais de Computação , Algoritmos
12.
Front Cardiovasc Med ; 10: 1118499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144061

RESUMO

Background: Cardiac function quantification in cardiovascular magnetic resonance requires precise contouring of the heart chambers. This time-consuming task is increasingly being addressed by a plethora of ever more complex deep learning methods. However, only a small fraction of these have made their way from academia into clinical practice. In the quality assessment and control of medical artificial intelligence, the opaque reasoning and associated distinctive errors of neural networks meet an extraordinarily low tolerance for failure. Aim: The aim of this study is a multilevel analysis and comparison of the performance of three popular convolutional neural network (CNN) models for cardiac function quantification. Methods: U-Net, FCN, and MultiResUNet were trained for the segmentation of the left and right ventricles on short-axis cine images of 119 patients from clinical routine. The training pipeline and hyperparameters were kept constant to isolate the influence of network architecture. CNN performance was evaluated against expert segmentations for 29 test cases on contour level and in terms of quantitative clinical parameters. Multilevel analysis included breakdown of results by slice position, as well as visualization of segmentation deviations and linkage of volume differences to segmentation metrics via correlation plots for qualitative analysis. Results: All models showed strong correlation to the expert with respect to quantitative clinical parameters (rz ' = 0.978, 0.977, 0.978 for U-Net, FCN, MultiResUNet respectively). The MultiResUNet significantly underestimated ventricular volumes and left ventricular myocardial mass. Segmentation difficulties and failures clustered in basal and apical slices for all CNNs, with the largest volume differences in the basal slices (mean absolute error per slice: 4.2 ± 4.5 ml for basal, 0.9 ± 1.3 ml for midventricular, 0.9 ± 0.9 ml for apical slices). Results for the right ventricle had higher variance and more outliers compared to the left ventricle. Intraclass correlation for clinical parameters was excellent (≥0.91) among the CNNs. Conclusion: Modifications to CNN architecture were not critical to the quality of error for our dataset. Despite good overall agreement with the expert, errors accumulated in basal and apical slices for all models.

13.
Phys Med Biol ; 68(5)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763999

RESUMO

Objective.T1 mapping of the liver is time consuming and can be challenging due to respiratory motion. Here we present a prospective slice tracking approach, which utilizes an external ultra-wide band radar signal and allows for efficient T1 mapping during free-breathing.Approach.The fast radar signal is calibrated to an MR-based motion signal to create a motion model. This motion model provides motion estimates, which are used to carry out slice tracking for any subsequent clinical scan. This approach was evaluated in simulations, phantom experiments andin vivoscans.Main results.Radar-based slice tracking was implemented on an MR system with a total latency of 77 ms. Moving phantom experiments showed accurate motion prediction with an error of 0.12 mm in anterior-posterior and 0.81 mm in head-feet direction. The model error remained stable for up to two hours.In vivoexperiments showed visible image improvement with a motion model error three times smaller than with a respiratory bellow. For T1 mapping during free-breathing the proposed approach provided similar results compared to reference T1 mapping during a breathhold.Significance.The proposed radar-based approach achieves accurate slice tracking and enables efficient T1 mapping of the liver during free-breathing. This motion correction approach is independent from scanning parameters and could also be used for applications like MR guided radiotherapy or MR Elastography.


Assuntos
Imageamento por Ressonância Magnética , Radar , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Fígado/diagnóstico por imagem , Respiração , Imagens de Fantasmas
14.
Phys Med ; 105: 102514, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36608390

RESUMO

PURPOSE: Assess and optimise acquisition parameters for continuous cardiac Magnetic Resonance Fingerprinting (MRF). METHODS: Different acquisition schemes (flip angle amplitude, lobe size, T2-preparation pulses) for cardiac MRF were assessed in simulations and phantom and demonstrated in one healthy volunteer. Three different experimental designs were evaluated using central composite and fractional factorial designs. Relative errors for T1 and T2 were calculated for a wide range of realistic T1 and T2 value combinations. The effect of different designs on the accuracy of T1 and T2 was assessed using response surface modelling and Cohen's f calculations. RESULTS: Larger flip angle amplitudes lead to an improvement of T2 accuracy and precision for simulations and phantom experiments. Similar effects could also be shown qualitatively in in-vivo scans. Accuracy and precision of T1 were robust to different design parameters with improved values for faster flip angle variation. Cohen's f showed that T2-preparation pulses influence the accuracy of T2. The number of pulses used is the most important parameter. Without T2-preparation pulses, RMSE were 3.0 ± 8.09 % for T1 and 16.24 ± 14.47 % for T2. Using those pulses reduced the RMSE to 2.3 ± 8.4 % for T1 and 14.11 ± 13.46 % for T2. Nonetheless, even if the improvement is significant, RMSE are still too high for reliable quantification. CONCLUSION: In contrast to previous study using triggered MRF sequences using < 30° flip angles, large flip angle amplitudes led to better results for continuous cardiac MRF sequences. T2-preparation pulse can improve the accuracy of T2 estimation but lead to longer scan times.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
15.
Med Phys ; 50(5): 2939-2960, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36565150

RESUMO

BACKGROUND: Unrolled neural networks (NNs) have been extensively applied to different image reconstruction problems across all imaging modalities. A key component of the latter is that they allow for physics-informed learning of the regularization method, which is parametrized by the NN. However, due to the lack of understanding of deep NNs from a theoretical point of view, unrolled NNs are still black-boxes when the regularizers are given by deep NNs, for example, U-Nets. PURPOSE: Dictionarylearning (DL) is a well-established regularization method, which is based on learning a transform to sparsely approximate the signals of interest. Typically, DL-based image reconstruction either employs a dictionary, which was pretrained on a set of patches which were extracted from ground-truth images or a dictionary which is jointly trained during the reconstruction. However, in both cases, the used DL-algorithms are not designed to take into account the reconstruction problem or the underlying physical model, which describes the imaging process. In this work, we propose a DL-algorithm based on unrolled NNs to overcome these limitations. METHODS: We construct an unrolled NN, which corresponds to an unrolled DL-based reconstruction algorithm and train the unrolled NN to optimize its weights, that is, the atoms of the dictionary, by back-propagation in a supervised manner. Further, we propose a new way to employ a 2D dictionary in the spatio-temporal domain. We tested and evaluated the method on an accelerated cardiac cine MR image reconstruction problem using 216/36/36 dynamic images for training, validation, and testing and compared it to two well-known state-of-the-art approaches for cardiac cine MRI based on deep iterative CNNs. Further, we analyze the obtained dictionaries in terms of dictionary-coherence and structure of the atoms. Last, we compare the reported methods in terms of stability by applying them to an entirely different dataset consisting of 49 different test images. RESULTS: The investigated physics-informed DL-approach yields significantly more accurate reconstructions compared to the DL-method, which uses dictionaries obtained by decoupled pretraining, thereby providing an improvement of up to 4.90 dB in terms of PSNR and 5% in terms of SSIM. Further, the proposed spatio-temporal 2D dictionary outperforms the 1D and 3D dictionaries by preventing smoothing of image details while still accurately removing undersampling artifacts and noise resulting in an increase of up to 1.10 dB in terms of PSNR and 4% in terms of SSIM. Although being surpassed by the CNNs on the first dataset, the proposed NNs-based DL method is more stable compared to the latter approach and yields comparable results on the second dataset. Last, it has the advantage of being entirely interpretable in each component. CONCLUSIONS: The presented physics-informed NN can be used as training algorithm for a classical and interpretable data-driven regularization method based on a learned dictionary, which can then not only be linked to the considered data but also to the reconstruction method that the NN defines.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos
16.
MAGMA ; 36(1): 135-150, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35921020

RESUMO

OBJECTIVE: To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition. MATERIALS AND METHODS: During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior-posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects. RESULTS: Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data. DISCUSSION: Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.


Assuntos
Imageamento por Ressonância Magnética , Miocárdio , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Respiração
17.
Phys Med Biol ; 67(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36265478

RESUMO

Objective. To provide 3D high-resolution cardiac T1 maps using model-based super-resolution reconstruction (SRR).Approach. Due to signal-to-noise ratio limitations and the motion of the heart during imaging, often 2D T1 maps with only low through-plane resolution (i.e. slice thickness of 6-8 mm) can be obtained. Here, a model-based SRR approach is presented, which combines multiple stacks of 2D acquisitions with 6-8 mm slice thickness and generates 3D high-resolution T1 maps with a slice thickness of 1.5-2 mm. Every stack was acquired in a different breath hold (BH) and any misalignment between BH was corrected retrospectively. The novelty of the proposed approach is the BH correction and the application of model-based SRR on cardiac T1 Mapping. The proposed approach was evaluated in numerical simulations and phantom experiments and demonstrated in four healthy subjects.Main results. Alignment of BH states was essential for SRR even in healthy volunteers. In simulations, respiratory motion could be estimated with an RMS error of 0.18 ± 0.28 mm. SRR improved the visualization of small structures. High accuracy and precision (average standard deviation of 69.62 ms) of the T1 values was ensured by SRR while the detectability of small structures increased by 40%.Significance. The proposed SRR approach provided T1 maps with high in-plane and high through-plane resolution (1.3 × 1.3 × 1.5-2 mm3). The approach led to improvements in the visualization of small structures and precise T1 values.


Assuntos
Ecocardiografia Tridimensional , Humanos , Estudos Retrospectivos
18.
Magn Reson Med ; 88(4): 1561-1574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35775790

RESUMO

PURPOSE: Myocardial fat infiltrations are associated with a range of cardiomyopathies. The purpose of this study was to perform cardio-respiratory motion-correction for model-based water-fat separation to image fatty infiltrations of the heart in a free-breathing, non-cardiac-triggered high-resolution 3D MRI acquisition. METHODS: Data were acquired in nine patients using a free-breathing, non-cardiac-triggered high-resolution 3D Dixon gradient-echo sequence and radial phase encoding trajectory. Motion correction was combined with a model-based water-fat reconstruction approach. Respiratory and cardiac motion models were estimated using a dual-mode registration algorithm incorporating both motion-resolved water and fat information. Qualitative comparisons of fat structures were made between 2D clinical routine reference scans and reformatted 3D motion-corrected images. To evaluate the effect of motion correction the local sharpness of epicardial fat structures was analyzed for motion-averaged and motion-corrected fat images. RESULTS: The reformatted 3D motion-corrected reconstructions yielded qualitatively comparable fat structures and fat structure sharpness in the heart as the standard 2D breath-hold. Respiratory motion correction improved the local sharpness on average by 32% ± 24% with maximum improvements of 81% and cardiac motion correction increased the sharpness further by another 15% ± 11% with maximum increases of 31%. One patient showed a fat infiltration in the myocardium and cardio-respiratory motion correction was able to improve its visualization in 3D. CONCLUSION: The 3D water-fat separated cardiac images were acquired during free-breathing and in a clinically feasible and predictable scan time. Compared to a motion-averaged reconstruction an increase in sharpness of fat structures by 51% ± 27% using the presented motion correction approach was observed for nine patients.


Assuntos
Coração , Água , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
19.
Magn Reson Med ; 87(6): 2621-2636, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092090

RESUMO

PURPOSE: Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS: Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B1+ shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS: The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION: This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B1+ and B0 variations, as well as respiratory and cardiac motion.


Assuntos
Imageamento por Ressonância Magnética , Água , Artefatos , Humanos , Imageamento Tridimensional , Movimento (Física) , Respiração
20.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20210111, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34218672

RESUMO

This special issue is the second part of a themed issue that focuses on synergistic tomographic image reconstruction and includes a range of contributions in multiple disciplines and application areas. The primary subject of study lies within inverse problems which are tackled with various methods including statistical and computational approaches. This volume covers algorithms and methods for a wide range of imaging techniques such as spectral X-ray computed tomography (CT), positron emission tomography combined with CT or magnetic resonance imaging, bioluminescence imaging and fluorescence-mediated imaging as well as diffuse optical tomography combined with ultrasound. Some of the articles demonstrate their utility on real-world challenges, either medical applications (e.g. motion compensation for imaging patients) or applications in material sciences (e.g. material decomposition and characterization). One of the desired outcomes of the special issues is to bring together different scientific communities which do not usually interact as they do not share the same platforms such as journals and conferences. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Assuntos
Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Imagem Multimodal/estatística & dados numéricos , Tomografia/estatística & dados numéricos , Algoritmos , Humanos , Movimento (Física) , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Software , Tomografia Computadorizada por Raios X/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...