Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cell Metab ; 36(7): 1521-1533.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38718792

RESUMO

Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1ß induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.


Assuntos
Ceramidas , Retinopatia Diabética , Imunoterapia , Ceramidas/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/imunologia , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Retina/metabolismo , Retina/patologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Ratos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Corpo Vítreo/metabolismo , Feminino , Camundongos Knockout
2.
J Thromb Haemost ; 22(2): 441-454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926194

RESUMO

BACKGROUND: Factor VIIa induces the release of extracellular vesicles (EVs) from endothelial cells (EEVs). Factor VIIa-released EEVs are enriched with microRNA-10a (miR10a) and elicit miR10a-dependent cytoprotective responses. OBJECTIVES: To investigate mechanisms by which FVIIa induces miR10a expression in endothelial cells and sorts miR10a into the EVs. METHODS: Activation of Elk-1 and TWIST1 expression was analyzed by immunofluorescence microscopy and immunoblot analysis. Small interfering RNA silencing approach was used to knock down the expression of specific genes in endothelial cells. EVs secreted from endothelial cells or released into circulation in mice were isolated by centrifugation and quantified by nanoparticle tracking analysis. Factor VIIa or EVs were injected into mice; mice were challenged with lipopolysaccharides to assess the cytoprotective effects of FVIIa or EVs. RESULTS: FVIIa activation of ERK1/2 triggered the activation of Elk-1, which led to the induction of TWIST1, a key transcription factor involved in miR10a expression. Factor VIIa also induced the expression of La, a small RNA-binding protein. Factor VIIa-driven acid sphingomyelinase (ASM) activation and the subsequent activation of the S1P receptor pathway were responsible for the induction of La. Silencing of ASM or La significantly reduced miR10a levels in FVIIa-released EEVs without affecting the cellular expression of miR10a. Factor VIIa-EEVs from ASM knocked-down cells failed to provide cytoprotective responses in cell and murine model systems. Administration of FVIIa protected wild-type but not ASM-/- mice against lipopolysaccharide-induced inflammation and vascular leakage. CONCLUSION: Our data suggest that enhanced cellular expression of miR10a coupled with La-dependent sorting of miR10a is responsible for enriching FVIIa-released EVs with miR10a.


Assuntos
Vesículas Extracelulares , MicroRNAs , Camundongos , Animais , Fator VIIa/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Lipopolissacarídeos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37815783

RESUMO

PURPOSE: After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. METHODS AND MATERIALS: For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GI-ARS lethal dose for this mouse strain. RESULTS: Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these findings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. CONCLUSIONS: Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies.

4.
J Thromb Haemost ; 21(12): 3414-3431, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37875382

RESUMO

BACKGROUND: Our recent studies showed that activated factor (F) VII (FVIIa) releases extracellular vesicles (EVs) from the endothelium. FVIIa-released EVs were found to be enriched with phosphatidylserine (PS) and contribute to the hemostatic effect of FVIIa in thrombocytopenia and hemophilia. OBJECTIVE: To investigate mechanisms by which FVIIa induces EV biogenesis and enriches EVs with PS. METHODS: FVIIa activation of acid sphingomyelinase (aSMase) was evaluated by its translocation to the cell surface. The role of aSMase in the biogenesis of FVIIa-induced EVs and their enrichment with PS was investigated using specific siRNAs and inhibitors of aSMase and its downstream metabolites. Wild-type and aSMase-/- mice were injected with a control vehicle or FVIIa. EVs released into circulation were quantified by nanoparticle tracking analysis. EVs hemostatic potential was assessed in a murine thrombocytopenia model. RESULTS: FVIIa activation of aSMase is responsible for both the externalization of PS and the release of EVs in endothelial cells. FVIIa-induced aSMase activation led to ceramide generation and de novo expression of transmembrane protein 16F. Inhibitors of ceramidases, sphingosine kinase, or sphingosine-1-phosphate receptor modulator blocked FVIIa-induced expression of transmembrane protein 16F and PS externalization without interfering with FVIIa release of EVs. In vivo, FVIIa release of EVs was markedly impaired in aSMase-/- mice compared with wild-type mice. Administration of a low dose of FVIIa, sufficient to induce EVs release, corrected bleeding associated with thrombocytopenia in wild-type mice but not in aSMase-/- mice. CONCLUSION: Our study identifies a novel mechanism by which FVIIa induces PS externalization and releases PS-enriched EVs.


Assuntos
Vesículas Extracelulares , Hemostáticos , Trombocitopenia , Animais , Camundongos , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fator VIIa/metabolismo , Fosfatidilserinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Trombocitopenia/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579172

RESUMO

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Assuntos
COVID-19 , Humanos , Ligantes , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
6.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212278

RESUMO

The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide-rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Lesões do Sistema Vascular , Humanos , Ceramidas , Pulmão/irrigação sanguínea
8.
Cell Death Discov ; 9(1): 31, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697383

RESUMO

Previous studies show increased sensitivity of older mice (28-29 months) compared with young adult mice (3 months, possessing a mature immune system) to radiation-induced GI lethality. Age-dependent lethality was associated with higher levels of apoptotic stem cells in small intestinal crypts that correlated with sphingomyelinase activity, a source of pro-apoptotic ceramide. The objective of this study is to determine whether the cycling crypt base columnar cells (CBCs) in aging animals are specifically more sensitive to radiation effects than the CBCs in young adult mice, and to identify factors that contribute to increased radiosensitivity. Mortality induced by subtotal body radiation was assessed at different doses (13 Gy, 14 Gy, and 15 Gy) in young adult mice versus older mice. Each dose was evaluated for the occurrence of lethal GI syndrome. A higher death rate due to radiation-induced GI syndrome was observed in older mice as compared with young adult mice: 30 vs. 0% at 13 Gy, 90 vs. 40% at 14 Gy, and 100 vs. 60% at 15 Gy. Radiation-induced damage to crypts was determined by measuring crypt regeneration (H&E staining, Ki67 expression), CBC biomarkers (lgr5 and ascl2), premature senescence (SA-ß-gal activity), and apoptosis of CBCs. At all three doses, crypt microcolony survival assays showed that the older mice had fewer regenerating crypts at 3.5 days post-radiation treatment. Furthermore, in the older animals, baseline CBCs numbers per circumference were significantly decreased, correlating with an elevated apoptotic index. Analysis of tissue damage showed an increased number of senescent CBCs per crypt circumference in older mice relative to younger mice, where the latter was not significantly affected by radiation treatment. It is concluded that enhanced sensitivity to radiation-induced GI syndrome and higher mortality in older mice can be attributed to a decreased capacity to regenerate crypts, presumably due to increased apoptosis and senescence of CBCs.

9.
Arterioscler Thromb Vasc Biol ; 43(1): 64-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412194

RESUMO

BACKGROUND: Our recent studies suggest that sphingomyelin levels in the plasma membrane influence TF (tissue factor) procoagulant activity. The current study was performed to investigate how alterations to sphingomyelin metabolic pathway would affect TF procoagulant activity and thereby affect hemostatic and thrombotic processes. METHODS: Macrophages and endothelial cells were transfected with specific siRNAs or infected with adenoviral vectors to alter sphingomyelin levels in the membrane. TF activity was measured in factor X activation assay. Saphenous vein incision-induced bleeding and the inferior vena cava ligation-induced flow restriction mouse models were used to evaluate hemostasis and thrombosis, respectively. RESULTS: Overexpression of SMS (sphingomyelin synthase) 1 or SMS2 in human monocyte-derived macrophages suppresses ATP-stimulated TF procoagulant activity, whereas silencing SMS1 or SMS2 increases the basal cell surface TF activity to the same level as of ATP-decrypted TF activity. Consistent with the concept that sphingomyelin metabolism influences TF procoagulant activity, silencing of acid sphingomyelinase or neutral sphingomyelinase 2 or 3 attenuates ATP-induced enhanced TF procoagulant activity in macrophages and endothelial cells. Niemann-Pick disease fibroblasts with a higher concentration of sphingomyelin exhibited lower TF activity compared with wild-type fibroblasts. In vivo studies revealed that LPS+ATP-induced TF activity and thrombin generation were attenuated in ASMase-/- mice, while their levels were increased in SMS2-/- mice. Further studies revealed that acid sphingomyelinase deficiency leads to impaired hemostasis, whereas SMS2 deficiency increases thrombotic risk. CONCLUSIONS: Overall, our data indicate that alterations in sphingomyelin metabolism would influence TF procoagulant activity and affect hemostatic and thrombotic processes.


Assuntos
Hemostáticos , Trombose , Camundongos , Humanos , Animais , Esfingomielinas , Esfingomielina Fosfodiesterase/genética , Células Endoteliais/metabolismo , Trombose/genética , Hemostasia , Trifosfato de Adenosina
10.
Cell Physiol Biochem ; 56(4): 436-448, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36037065

RESUMO

BACKGROUND/AIMS: It is unknown whether cancer stem cells respond differentially to treatment compared with progeny, potentially providing therapeutic vulnerabilities. Our program pioneered use of ultra-high single dose radiotherapy, which cures diverse metastatic diseases at a higher rate (90-95%) than conventional fractionation (~65%). Single dose radiotherapy engages a distinct biology involving microvascular acid sphingomyelinase/ceramide signaling, which, via NADPH oxidase-2-dependent perfusion defects, initiates an adaptive tumor SUMO Stress Response that globally-inactivates homologous recombination repair of double stand breaks, conferring cure. Accumulating data show diverse stem cells display heightened-dependence on homologous recombination repair to repair resolve double stand breaks. METHODS: Here we use colorectal cancer patient-derived xenografts containing logarithmically-increased Lgr5+ stem cells to explore whether optimizing engagement of this acid sphingomyelinase dependent biology enhances stem cell dependent tumor cure. RESULTS: We show radioresistant colorectal cancer patient-derived xenograft CLR27-2 contains radioresistant microvasculature and stem cells, whereas radiosensitive colorectal cancer patient-derived xenograft CLR1-1 contains radiosensitive microvasculature and stem cells. Pharmacologic or gene therapy enhancement of single dose radiotherapy-induced acid sphingomyelinase/ceramide-mediated microvascular dysfunction dramatically sensitizes CLR27-2 homologous recombination repair inactivation, converting Lgr5+ cells from the most resistant to most sensitive patient-derived xenograft population, yielding tumor cure. CONCLUSION: We posit homologous recombination repair represents a vulnerability determining colorectal cancer stem cell fate, approachable therapeutically using single dose radiotherapy.


Assuntos
Neoplasias Colorretais , Lesões do Sistema Vascular , Animais , Ceramidas , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Humanos , Células-Tronco Neoplásicas , Esfingomielina Fosfodiesterase/genética
11.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038749

RESUMO

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Assuntos
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Isquemia/metabolismo , Camundongos , Proteômica
12.
Cancer Res ; 82(15): 2678-2691, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35919990

RESUMO

Radionuclide irradiators (137Cs and 60Co) are commonly used in preclinical studies ranging from cancer therapy to stem cell biology. Amidst concerns of radiological terrorism, there are institutional initiatives to replace radionuclide sources with lower energy X-ray sources. As researchers transition, questions remain regarding whether the biological effects of γ-rays may be recapitulated with orthovoltage X-rays because different energies may induce divergent biological effects. We therefore sought to compare the effects of orthovoltage X-rays with 1-mm Cu or Thoraeus filtration and 137Cs γ-rays using mouse models of acute radiation syndrome. Following whole-body irradiation, 30-day overall survival was assessed, and the lethal dose to provoke 50% mortality within 30-days (LD50) was calculated by logistic regression. LD50 doses were 6.7 Gy, 7.4 Gy, and 8.1 Gy with 1-mm Cu-filtered X-rays, Thoraeus-filtered X-rays, and 137Cs γ-rays, respectively. Comparison of bone marrow, spleen, and intestinal tissue from mice irradiated with equivalent doses indicated that injury was most severe with 1-mm Cu-filtered X-rays, which resulted in the greatest reduction in bone marrow cellularity, hematopoietic stem and progenitor populations, intestinal crypts, and OLFM4+ intestinal stem cells. Thoraeus-filtered X-rays provoked an intermediate phenotype, with 137Cs showing the least damage. This study reveals a dichotomy between physical dose and biological effect as researchers transition to orthovoltage X-rays. With decreasing energy, there is increasing hematopoietic and intestinal injury, necessitating dose reduction to achieve comparable biological effects. SIGNIFICANCE: Understanding the significance of physical dose delivered using energetically different methods of radiation treatment will aid the transition from radionuclide γ-irradiators to orthovoltage X-irradiators.


Assuntos
Radioisótopos de Césio , Irradiação Corporal Total , Animais , Raios gama , Camundongos , Raios X
13.
Cancer Res ; 82(12): 2298-2312, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35472075

RESUMO

Identifying colorectal cancer patient populations responsive to chemotherapy or chemoradiation therapy before surgery remains a challenge. Recently validated mouse protocols for organoid irradiation employ the single hit multi-target (SHMT) algorithm, which yields a single value, the D0, as a measure of inherent tissue radiosensitivity. Here, we translate these protocols to human tissue to evaluate radioresponsiveness of patient-derived organoids (PDO) generated from normal human intestines and rectal tumors of patients undergoing neoadjuvant therapy. While PDOs from adenomas with a logarithmically expanded Lgr5+ intestinal stem cell population retain the radioresistant phenotype of normal colorectal PDOs, malignant transformation yields PDOs from a large patient subpopulation displaying marked radiosensitivity due to reduced homologous recombination-mediated DNA repair. A proof-of-principle pilot clinical trial demonstrated that rectal cancer patient responses to neoadjuvant chemoradiation, including complete response, correlate closely with their PDO D0 values. Overall, upon transformation to colorectal adenocarcinoma, broad radiation sensitivity occurs in a large subset of patients that can be identified using SHMT analysis of PDO radiation responses. SIGNIFICANCE: Analysis of inherent tissue radiosensitivity of patient-derived organoids may provide a readout predictive of neoadjuvant therapy response to radiation in rectal cancer, potentially allowing pretreatment stratification of patients likely to benefit from this approach.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Animais , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Humanos , Camundongos , Organoides/patologia , Tolerância a Radiação , Neoplasias Retais/patologia , Reto/patologia
14.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260534

RESUMO

Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5-positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane-dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury-induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.


Assuntos
Adenoma , Colite , Neoplasias Colorretais , Adenoma/metabolismo , Animais , Azoximetano , Colite/patologia , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo
15.
Cancer Res ; 81(13): 3706-3716, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33941615

RESUMO

Fanconi anemia is an inherited genome instability syndrome characterized by interstrand cross-link hypersensitivity, congenital defects, bone marrow failure, and cancer predisposition. Although DNA repair mediated by Fanconi anemia genes has been extensively studied, how inactivation of these genes leads to specific cellular phenotypic consequences associated with Fanconi anemia is not well understood. Here we report that Fanconi anemia stem cells in the C. elegans germline and in murine embryos display marked nonhomologous end joining (NHEJ)-dependent radiation resistance, leading to survival of progeny cells carrying genetic lesions. In contrast, DNA cross-linking does not induce generational genomic instability in Fanconi anemia stem cells, as widely accepted, but rather drives NHEJ-dependent apoptosis in both species. These findings suggest that Fanconi anemia is a stem cell disease reflecting inappropriate NHEJ, which is mutagenic and carcinogenic as a result of DNA misrepair, while marrow failure represents hematopoietic stem cell apoptosis. SIGNIFICANCE: This study finds that Fanconi anemia stem cells preferentially activate error-prone NHEJ-dependent DNA repair to survive irradiation, thereby conferring generational genomic instability that is instrumental in carcinogenesis.


Assuntos
Radioisótopos de Césio/efeitos adversos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Células-Tronco Embrionárias/patologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Instabilidade Genômica , Animais , Apoptose , Caenorhabditis elegans , Reparo do DNA , Células-Tronco Embrionárias/efeitos da radiação , Anemia de Fanconi/genética , Anemia de Fanconi/radioterapia , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Camundongos
16.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917976

RESUMO

In liposomal delivery, a big question is how to release the loaded material into the correct place. Here, we will test the targeting and release abilities of our sphingomyelin-consisting liposome. A change in release parameters can be observed when sphingomyelin-containing liposome is treated with sphingomyelinase enzyme. Sphingomyelinase is known to be endogenously released from the different cells in stress situations. We assume the effective enzyme treatment will weaken the liposome making it also leakier. To test the release abilities of the SM-liposome, we developed several fluorescence-based experiments. In in vitro studies, we used molecular quenching to study the sphingomyelinase enzyme-based release from the liposomes. We could show that the enzyme treatment releases loaded fluorescent markers from sphingomyelin-containing liposomes. Moreover, the release correlated with used enzymatic activities. We studied whether the stress-related enzyme expression is increased if the cells are treated with radiation as a stress inducer. It appeared that the radiation caused increased enzymatic activity. We studied our liposomes' biodistribution in the animal tumor model when the tumor was under radiation stress. Increased targeting of the fluorescent marker loaded to our liposomes could be found on the site of cancer. The liposomal targeting in vivo could be improved by radiation. Based on our studies, we propose sphingomyelin-containing liposomes can be used as a controlled release system sensitive to cell stress.


Assuntos
Corantes Fluorescentes , Lipossomos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Estresse Fisiológico/efeitos da radiação , Animais , Catálise , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática , Corantes Fluorescentes/química , Lipossomos/química , Camundongos , Imagem Molecular , Neoplasias/radioterapia , Imagem Óptica , Esfingomielinas/química , Coloração e Rotulagem
17.
JCI Insight ; 6(8)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33724956

RESUMO

After 9/11, threat of nuclear attack on American urban centers prompted government agencies to develop medical radiation countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS) and higher-dose gastrointestinal acute radiation syndrome (GI-ARS) lethality. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS in preclinical models, no mitigator potentially deliverable under mass casualty conditions preserves GI tract. Here, we report generation of an anti-ceramide 6B5 single-chain variable fragment (scFv) and show that s.c. 6B5 scFv delivery at 24 hours after a 90% lethal GI-ARS dose of 15 Gy mitigated mouse lethality, despite administration after DNA repair was complete. We defined an alternate target to DNA repair, an evolving pattern of ceramide-mediated endothelial apoptosis after radiation, which when disrupted by 6B5 scFv, initiates a durable program of tissue repair, permitting crypt, organ, and mouse survival. We posit that successful preclinical development will render anti-ceramide 6B5 scFv a candidate for inclusion in the Strategic National Stockpile for distribution after a radiation catastrophe.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Ceramidas/imunologia , Gastroenteropatias/tratamento farmacológico , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/efeitos da radiação , Anticorpos de Cadeia Única/farmacologia , Síndrome Aguda da Radiação/mortalidade , Animais , Reparo do DNA , Gastroenteropatias/mortalidade , Humanos , Injeções Subcutâneas , Intestino Delgado/patologia , Células Jurkat/efeitos dos fármacos , Células Jurkat/efeitos da radiação , Camundongos , Anticorpos de Cadeia Única/uso terapêutico
18.
Int J Radiat Oncol Biol Phys ; 110(3): 672-679, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422612

RESUMO

PURPOSE: This prospective phase 3 randomized trial was designed to test whether ultra high single-dose radiation therapy (24 Gy SDRT) improves local control of oligometastatic lesions compared to a standard hypofractionated stereotactic body radiation therapy regimen (3 × 9 Gy SBRT). The secondary endpoint was to assess the associated toxicity and the impact of ablation on clinical patterns of metastatic progression. METHODS AND MATERIALS: Between November 2010 and September 2015, 117 patients with 154 oligometastatic lesions (≤5/patient) were randomized in a 1:1 ratio to receive 24 Gy SDRT or 3 × 9 Gy SBRT. Local control within the irradiated field and the state of metastatic spread were assessed by periodic whole-body positron emission tomography/computed tomography and/or magnetic resonance imaging. Median follow-up was 52 months. RESULTS: A total of 59 patients with 77 lesions were randomized to 24 Gy SDRT and 58 patients with 77 lesions to 3 × 9 Gy SBRT. The cumulative incidence of local recurrence for SDRT-treated lesions was 2.7% (95% confidence interval [CI], 0%-6.5%) and 5.8% (95% CI, 0.2%-11.5%) at years 2 and 3, respectively, compared with 9.1% (95% CI, 2.6%-15.6%) and 22% (95% CI, 11.9%-32.1%) for SBRT-treated lesions (P = .0048). The 2- and 3-year cumulative incidences of distant metastatic progression in the SDRT patients were 5.3% (95% CI, 0%-11.1%), compared with 10.7% (95% CI, 2.5%-18.8%) and 22.5% (95% CI, 11.1%-33.9%), respectively, for the SBRT patients (P = .010). No differences in toxicity were observed. CONCLUSIONS: The study confirms SDRT as a superior ablative treatment, indicating that effective ablation of oligometastatic lesions is associated with significant mitigation of distant metastatic progression.


Assuntos
Neoplasias/patologia , Neoplasias/radioterapia , Doses de Radiação , Radiocirurgia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Int J Radiat Oncol Biol Phys ; 109(1): 288-297, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777335

RESUMO

PURPOSE: Although 24 Gy single-dose radiation therapy (SDRT) renders >90% 5-year local relapse-free survival in human solid tumor lesions, SDRT delivery is not feasible in ∼50% of oligometastatic lesions owing to interference by dose/volume constraints of a serial organ at risk (OAR). Conformal OAR avoidance is based on a hypothetical model positing that the recently described SDRT biology specifically permits volumetric subdivision of the SDRT dose, such that high-intensity vascular drivers of SDRT lethality, generated within a major tumor subvolume exposed to a high 24 Gy dose (high-dose planning target volume [PTVHD]), would equilibrate SDRT signaling intensity throughout the tumor interstitial space, rendering bystander radiosensitization of a minor subvolume (perfusion-modulated dose sculpting PTV [PTVPMDS]), dose-sculpted to meet a serial OAR dose/volume constraint. An engineered PTVPMDS may thus yield tumor ablation despite PMDS dose reduction and conformally avoiding OAR exposure to a toxic dose. METHODS AND MATERIALS: Dose fall-off within the PTVPMDS penumbra of oligometastatic lesions was planned and delivered by intensity modulated inverse dose painting. SDRT- and SDRT-PMDS-treated lesions were followed with periodic positron emission tomography/computed tomography imaging to assess local tumor control. RESULTS: Cumulative baseline 5-year local relapse rates of oligometastases treated with 24 Gy SDRT alone (8% relapses, n = 292) were similar in moderate PTVPMDS dose-sculpted (23-18 Gy, n = 76, 11% relapses, P = .36) and extreme dose-sculpted (<18 Gy, n = 61, 14% relapses, P = .29) lesions, provided the major 24 Gy PTVHD constituted ≥60% of the total PTV. In contrast, 28% of local relapses occurred in 26 extreme dose-sculpted PTVPMDS lesions when PTVHD constituted <60% of the total PTV (P = .004), suggesting a threshold for the PTVPMDS bystander effect. CONCLUSION: The study provides compelling clinical support for the bystander radiosensitization hypothesis, rendering local cure of tumor lesions despite a ≥25% PTVPMDS dose reduction of the 24 Gy PTVHD dose, adapted to conformally meet OAR dose/volume constraints. The SDRT-PMDS approach thus provides a therapeutic resolution to otherwise radioablation-intractable oligometastatic disease.


Assuntos
Circulação Sanguínea , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Radioterapia Assistida por Computador/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/fisiopatologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Resultado do Tratamento
20.
Basic Res Cardiol ; 115(6): 64, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057972

RESUMO

By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.


Assuntos
Encéfalo/irrigação sanguínea , Infarto da Artéria Cerebral Média/enzimologia , Microvasos/enzimologia , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Traumatismo por Reperfusão/enzimologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Esfingomielina Fosfodiesterase/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA