Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(28): e2403642, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653478

RESUMO

Myocardial infarction (MI) causes cell death, disrupts electrical activity, triggers arrhythmia, and results in heart failure, whereby 50-60% of MI-associated deaths manifest as sudden cardiac deaths (SCD). The most effective therapy for SCD prevention is implantable cardioverter defibrillators (ICDs). However, ICDs contribute to adverse remodeling and disease progression and do not prevent arrhythmia. This work develops an injectable collagen-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) hydrogel that protects infarcted hearts against ventricular tachycardia (VT) and can be combined with human induced pluripotent stem cell (hiPSC)-cardiomyocytes to promote partial cardiac remuscularization. PEDOT:PSS improves collagen gel formation, micromorphology, and conductivity. hiPSC-cardiomyocytes in collagen-PEDOT:PSS hydrogels exhibit near-adult sarcomeric length, improved contractility, enhanced calcium handling, and conduction velocity. RNA-sequencing data indicate enhanced maturation and improved cell-matrix interactions. Injecting collagen-PEDOT:PSS hydrogels in infarcted mouse hearts decreases VT to the levels of healthy hearts. Collectively, collagen-PEDOT:PSS hydrogels offer a versatile platform for treating cardiac injuries.


Assuntos
Arritmias Cardíacas , Colágeno , Condutividade Elétrica , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Miócitos Cardíacos , Poliestirenos , Infarto do Miocárdio/patologia , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Camundongos , Colágeno/química , Hidrogéis/química , Arritmias Cardíacas/prevenção & controle , Poliestirenos/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Tiofenos
2.
Small Methods ; 7(10): e2300618, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37462245

RESUMO

Van der Waals materials exhibit intriguing properties for future electronic and optoelectronic devices. As those unique features strongly depend on the materials' thickness, it has to be accessed precisely for tailoring the performance of a specific device. In this study, a nondestructive and technologically easily implementable approach for accurate thickness determination of birefringent layered materials is introduced by combining optical reflectance measurements with a modular model comprising a 4×4 transfer matrix method and the optical components relevant to light microspectroscopy. This approach is demonstrated being reliable and precise for thickness determination of anisotropic materials like highly oriented pyrolytic graphite and black phosphorus in a range from atomic layers up to more than 100 nm. As a key feature, the method is well-suited even for encapsulated layers outperforming state of-the-art techniques like atomic force microscopy.

3.
Adv Healthc Mater ; 12(20): e2202408, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976709

RESUMO

Cardiac tissue engineering is a promising strategy to prevent heart failure. However, several issues remain unsolved, including efficient electrical coupling and incorporating factors to enhance tissue maturation and vascularization. Herein, a biohybrid hydrogel that enhances beating properties of engineered cardiac tissues and allows drug release concurrently is developed. Gold nanoparticles (AuNPs) with different sizes (18-241 nm) and surface charges (33.9-55.4 mV) are synthesized by reducing gold (III) chloride trihydrate using branched polyethyleneimine (bPEI). These nanoparticles increase gel stiffness from ≈91 to ≈146 kPa, enhance electrical conductivity of collagen hydrogels from ≈40 to 49-68 mS cm-1 , and allow slow and steady release of loaded drugs. Engineered cardiac tissues based on bPEI-AuNP-collagen hydrogels and either primary or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes show enhanced beating properties. hiPSC-derived cardiomyocytes exhibit more aligned and wider sarcomeres in bPEI-AuNP-collagen hydrogels compared to collagen hydrogels. Furthermore, the presence of bPEI-AuNPs result in advanced electrical coupling evidenced by synchronous and homogenous calcium flux throughout the tissue. RNA-seq analyses are in agreement with these observations. Collectively, this data demonstrate the potential of bPEI-AuNP-collagen hydrogels to improve tissue engineering approaches to prevent heart failure and possibly treat diseases of other electrically sensitive tissues.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Nanopartículas Metálicas , Humanos , Ouro , Engenharia Tecidual , Polietilenoimina , Hidrogéis/farmacologia , Liberação Controlada de Fármacos , Miócitos Cardíacos , Colágeno
4.
RSC Adv ; 9(7): 3570-3576, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30854196

RESUMO

We report a straightforward chemical methodology for controlling the thickness of black phosphorus flakes down to the monolayer limit by layer-by-layer oxidation and thinning, using water as solubilizing agent. Moreover, the oxidation process can be stopped at will by two different passivation procedures, namely the non-covalent functionalization with perylene diimide chromophores, which prevents the photooxidation, or by using a protective ionic liquid layer. The obtained flakes preserve their electronic properties as demonstrated by fabricating a BP field-effect transistor (FET). This work paves the way for the preparation of BP devices with controlled thickness.

5.
Sci Rep ; 7: 45165, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345640

RESUMO

Covalent functionalisation of graphene is a continuously progressing field of research. The optical properties of such derivatives attract particular attention. In virtually all optical responses, however, an enhancement in peak intensity with increase of sp3 carbon content, and a vanishing of the peak position shift in monolayer compared to few-layer systems, is observed. The understanding of these seemingly connected phenomena is lacking. Here we demonstrate, using Raman spectroscopy and in situ electrostatic doping techniques, that the intensity is directly modulated by an additional contribution from photoluminescent π-conjugated domains surrounded by sp3 carbon regions in graphene monolayers. The findings are further underpinned by a model which correlates the individual Raman mode intensities to the degree of functionalisation. We also show that the position shift in the spectra of solvent-based and powdered functionalised graphene derivatives originates predominantly from the presence of edge-to-edge and edge-to-basal plane interactions and is by large functionalisation independent.

6.
Beilstein J Nanotechnol ; 7: 1284-1288, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826502

RESUMO

The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nanowires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we employed the 1D Kubo-Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the nanowire centre upon diameter reduction.

7.
Angew Chem Int Ed Engl ; 55(47): 14858-14862, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27781343

RESUMO

Covalently functionalizing mechanical exfoliated mono- and bilayer graphenides with λ-iodanes led to the discovery that the monolayers supported on a SiO2 substrate are considerably more reactive than bilayers as demonstrated by statistical Raman spectroscopy/microscopy. Supported by DFT calculations we show that ditopic addend binding leads to much more stable products than the corresponding monotopic reactions as a result of the much lower lattice strain of the reactions products. The chemical nature of the substrate (graphene versus SiO2 ) plays a crucial role.

8.
Beilstein J Nanotechnol ; 7: 1574-1578, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144508

RESUMO

We studied the electrical transport properties of Au-seeded germanium nanowires with radii ranging from 11 to 80 nm at ambient conditions. We found a non-trivial dependence of the electrical conductivity, mobility and carrier density on the radius size. In particular, two regimes were identified for large (lightly doped) and small (stronger doped) nanowires in which the charge-carrier drift is dominated by electron-phonon and ionized-impurity scattering, respectively. This goes in hand with the finding that the electrostatic properties for radii below ca. 37 nm have quasi one-dimensional character as reflected by the extracted screening lengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA