Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Rev ; 313(1): 358-375, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36161656

RESUMO

C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.


Assuntos
Hemoglobinúria Paroxística , Humanos , Hemoglobinúria Paroxística/tratamento farmacológico , Complemento C3/metabolismo , Complemento C3/farmacologia , Ativação do Complemento , Complemento C5/farmacologia , Complemento C5/uso terapêutico , Inativadores do Complemento/farmacologia , Inativadores do Complemento/uso terapêutico
2.
Front Immunol ; 13: 931273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860237

RESUMO

The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.


Assuntos
Proteínas do Sistema Complemento , Neoplasias , Ativação do Complemento , Humanos , Linfócitos T , Microambiente Tumoral
3.
Sci Immunol ; 6(66): eabf2489, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932384

RESUMO

While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the "complosome," functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1ß production, both at the transcriptional level and processing of pro­IL-1ß. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1ß produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.


Assuntos
Inflamação/imunologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência
4.
Front Psychol ; 12: 708393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393947

RESUMO

Bifocal attention has been conceptualized differently by various scholars; however, all converge in the idea that the therapeutic process includes the need for the therapist to focus his attention on more than one aspect of the therapeutic setting. We propose a novel view in the application of bifocal attention within the mentalizing framework (MBT) of working with children, adolescents, and their families. We start by providing a short history of the evolution of the construct of bifocal attention, followed by a brief description of the structure of MBT for children and adolescents, emphasizing the crucial role of bifocal and multiple attentions in the mentalizing therapist. We close by discussing the importance of continued supervision in facilitating the maintaining of mentalizing glasses in therapy.

5.
Sci Immunol ; 6(58)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827897

RESUMO

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Assuntos
COVID-19/metabolismo , Ativação do Complemento , Células Epiteliais/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , SARS-CoV-2/metabolismo , COVID-19/patologia , Linhagem Celular Tumoral , Complemento C3a/metabolismo , Fator B do Complemento/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/patologia
6.
Immunity ; 52(3): 513-527.e8, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187519

RESUMO

Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.


Assuntos
Complemento C3/imunologia , Integrinas/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Linfócitos/imunologia , Monócitos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Adulto , Idoso , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Criança , Pré-Escolar , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Transdução de Sinais/imunologia
7.
Front Immunol ; 9: 2449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405635

RESUMO

Autocrine activation of the complement receptors C3aR and CD46 by complement activation components C3a and C3b produced through C3 cleavage by the protease cathepsin L (CTSL) during T cell stimulation is a requirement for IFN-γ production and Th1 induction in human CD4+ T cells. Thus, lack of autocrine CD46 activation, such as in CD46-deficient patients, is associated with defective Th1 responses and recurrent infections. We have identified LGMN [the gene coding for legumain, also known as asparaginyl endopeptidase (AEP)] as one of the key genes induced by CD46 co-stimulation during human CD4+ T cell activation. AEP processes and activates a range of proteins, among those α1-thymosin and CTSL, which both drive intrinsically Th1 activity-but has so far not been described to be functionally active in human T cells. Here we found that pharmacological inhibition of AEP during activation of human CD4+ T cells reduced CTSL activation and the CTSL-mediated generation of intracellular C3a. This translated into a specific reduction of IFN-γ production without affecting cell proliferation or survival. In line with these findings, CD4+ T cells isolated from Lgmn-/- mice also displayed a specific defect in IFN-γ secretion and Th1 induction. Furthermore, we did not observe a role for AEP-driven autocrine α1-thymosin activation in T cell-derived IFN-γ production. These data suggest that AEP is an "upstream" activator of the CTSL-C3-IFN-γ axis in human CD4+ T cells and hence an important supporter of human Th1 induction.


Assuntos
Catepsina L/metabolismo , Complemento C3a/imunologia , Complemento C3b/imunologia , Cisteína Endopeptidases/metabolismo , Interferon gama/metabolismo , Células Th1/imunologia , Animais , Proliferação de Células , Cisteína Endopeptidases/genética , Humanos , Interferon gama/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteína Cofatora de Membrana/metabolismo , Camundongos , Camundongos Knockout , Receptores de Complemento/metabolismo , Timalfasina/metabolismo
8.
Annu Rev Immunol ; 36: 309-338, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677470

RESUMO

The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.


Assuntos
Proteínas do Sistema Complemento/imunologia , Imunomodulação , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação do Complemento/imunologia , Metabolismo Energético , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular , Proteína Cofatora de Membrana/metabolismo , Células Th1/imunologia , Células Th1/metabolismo
9.
J Eval Clin Pract ; 24(4): 859-863, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691958

RESUMO

For a relatively long period of time, mental functioning was mainly associated with personal profile while brain functioning went by the wayside. After the 90s of the 20th century, or the so called "Decade of the Brain", today, contemporary specialists work on the boundary between fundamental science and medicine. This brings neuroscience, neuropsychology, psychiatry, and psychotherapy closer to each other. Today, we definitely know that brain structures are being built and altered thanks to experience. Psychotherapy can be more effective when based on a neuropsychological approach-this implies identification of the neural foundations of various disorders and will lead to specific psychotherapeutic conclusions. The knowledge about the brain is continually enriched, which leads to periodic rethinking and updating of the therapeutic approaches to various diseases of the nervous system and brain dysfunctions. The aim of translational studies is to match and combine scientific areas, resources, experience and techniques to improve prevention, diagnosis and therapies, and "transformation" of scientific discoveries into potential treatments of various diseases done in laboratory conditions. Neuropsychological studies prove that cognition is a key element that links together brain functioning and behaviour. According to Dr. Kandel, all experimental events, including psychotherapeutic interventions, affect the structure and function of neuronal synapses. The story of why psychotherapy works is a story of understanding the brain mechanisms of psychic processes, a story of how the brain has been evolving to ensure learning, forgetting, and the mechanisms of permanent psychological change. The new evidence on brain functioning necessitates the integration of neuropsychological achievements in the psychotherapeutic process. An integrative approach is needed to take into account the dynamic interaction between brain functioning, psyche, soul, spirit, and social interaction, ie, development of a model of psychotherapeutic work based on cerebral plasticity! Brain-based psychotherapy aims at changing brain functioning not directly, but through experiences. This is neuro-psychologically informed psychotherapy.


Assuntos
Encéfalo/fisiopatologia , Neurociência Cognitiva , Processos Mentais/fisiologia , Processos Psicoterapêuticos , Psicoterapia/métodos , Neurociência Cognitiva/métodos , Neurociência Cognitiva/tendências , Estudos de Avaliação como Assunto , Humanos , Neuropsiquiatria/métodos , Neuropsiquiatria/tendências , Neuropsicologia/métodos , Neuropsicologia/tendências
10.
Semin Immunol ; 37: 85-97, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29454575

RESUMO

Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Animais , Ativação do Complemento , Citotoxicidade Imunológica , Humanos , Imunidade Inata , Imunomodulação , Neoplasias/imunologia , Microambiente Tumoral
12.
Mol Immunol ; 89: 2-9, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28601357

RESUMO

The complement system was defined over a century ago based on its ability to "complement" the antibody-mediated and cell-mediated immune responses against pathogens. Today our understanding of this ancient part of innate immunity has changed substantially and we know now that complement plays an undisputed pivotal role in the regulation of both innate and adaptive immunity. The complement system consists of over 50 blood-circulating, cell-surface expressed and intracellular proteins. It is key in the recognition and elimination of invading pathogens, also in the removal of self-derived danger such as apoptotic cells, and it supports innate immune responses and the initiation of the general inflammatory reactions. The long prevailing classic view of complement was that of a serum-operative danger sensor and first line of defence system, however, recent experimental and clinical evidences have demonstrated that "local" tissue and surprisingly intracellular complement (the complosome) activation impacts on normal cell physiology. This review will focus on novel aspects of intracellular complement activation and its unexpected roles in basic cell processes such as metabolism. We also discuss what the existence of the complosome potentially means for how the host handles intracellular pathogens such as viruses.


Assuntos
Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Citoplasma/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/imunologia , Animais , Proteínas do Sistema Complemento/metabolismo , Citoplasma/metabolismo , Humanos , Imunidade Celular/imunologia , Imunidade Inata/imunologia , Modelos Imunológicos , Linfócitos T/metabolismo
13.
Front Immunol ; 8: 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149297

RESUMO

The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather "predictable" but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.

14.
J Pathol ; 240(1): 61-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27235854

RESUMO

Anti-neutrophil cytoplasmic antibody vasculitis is a systemic autoimmune disease with glomerulonephritis and pulmonary haemorrhage as major clinical manifestations. The name reflects the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind to both neutrophils and monocytes. Evidence of the pathogenicity of these autoantibodies is provided by the observation that injection of anti-myeloperoxidase antibodies into mice causes a pauci-immune focal segmental necrotizing glomerulonephritis which is histologically similar to the changes seen on renal biopsy in patients. Previous studies in this model have implicated the alternative pathway of complement activation and the anaphylatoxin C5a. Despite this progress, the factors that initiate complement activation have not been defined. In addition, the relative importance of bone marrow-derived and circulating C5 is not known. This is of interest given the recently identified roles for complement within leukocytes. We induced anti-myeloperoxidase vasculitis in mice and confirmed a role for complement activation by demonstrating protection in C3-deficient mice. We showed that neither MASP-2- nor properdin-deficient mice were protected, suggesting that alternative pathway activation does not require properdin or the lectin pathway. We induced disease in bone marrow chimaeric mice and found that circulating and not bone marrow-derived C5 was required for disease. We have therefore excluded properdin and the lectin pathway as initiators of complement activation and this means that future work should be directed at other potential factors within diseased tissue. In addition, in view of our finding that circulating and not bone marrow-derived C5 mediates disease, therapies that decrease hepatic C5 secretion may be considered as an alternative to those that target C5 and C5a. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Complemento C5/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Properdina/metabolismo , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/induzido quimicamente , Medula Óssea/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Complemento C5/genética , Modelos Animais de Doenças , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Camundongos , Camundongos Knockout , Peroxidase/imunologia , Properdina/genética
15.
Immunity ; 42(6): 1033-47, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084023

RESUMO

Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function.


Assuntos
Proteínas do Sistema Complemento/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteína Cofatora de Membrana/metabolismo , Células Th1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Reprogramação Celular/imunologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Celular/genética , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Cofatora de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Fosforilação Oxidativa , RNA Interferente Pequeno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
16.
Nat Rev Immunol ; 14(12): 811-20, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25394942

RESUMO

Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.


Assuntos
Linfócitos B/imunologia , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Imunidade Inata/imunologia , Receptores de Complemento/imunologia , Linfócitos T/imunologia , Animais , Humanos , Inflamassomos/imunologia , Camundongos , Receptores de Fatores de Crescimento/imunologia , Receptores Notch/imunologia
17.
Methods Mol Biol ; 1100: 329-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24218272

RESUMO

CD46 is an important regulator of the complement system by preventing unwanted deposition of the complement activation products and opsonins C3b/C4b onto self-tissue. Recently, intracellular signals mediated by CD46 activation on several distinct human cell types have demonstrated that CD46 also plays decisive roles in immuneregulation. The growing recognition of CD46 as key regulator in several vital biological processes, led to increased demand in sensitive methods for monitoring CD46 expression and changes thereof on cells and in tissues. Here we describe a method, which allows for studying CD46 expression on the surface of cells using specific antibodies in combination with fluorescence-activated cell sorting (FACS) analysis.


Assuntos
Citometria de Fluxo , Proteína Cofatora de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Anticorpos Monoclonais/imunologia , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem , Proteína Cofatora de Membrana/imunologia , Proteínas de Membrana/imunologia , Receptores de IgG/antagonistas & inibidores
18.
Methods Mol Biol ; 1100: 341-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24218273

RESUMO

CD59 is the single regulator of the terminal complement pathway. It has been implicated in disease such as Paroxysmal nocturnal hemoglobinuria (PMH) and cancer. Expression of CD59 protects normal and malignant cells from the cytotoxic potential of the complement system. Here we describe a method, which allows for studying its expression on the surface of cells.


Assuntos
Antígenos CD59/metabolismo , Citometria de Fluxo , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD59/imunologia , Linhagem Celular , Fibroblastos , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem , Camundongos
19.
Methods Mol Biol ; 1100: 347-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24218274

RESUMO

CD59 overexpression has been shown to confer the resistance of tumors to complement lysis. Complement lysis is one of the two major killing mechanisms of therapeutic anticancer antibodies. This chapter provides a method that allows studying the extent of complement protection of tumors by CD59.


Assuntos
Antígenos CD59/imunologia , Antígenos CD59/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citotoxicidade Imunológica , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Camundongos , Ratos
20.
Bio Protoc ; 4(16)2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29094056

RESUMO

The complement component C3 is the major effector molecule of the complement system. C3 circulates in the blood and interstitial fluids as pro-enzyme and is activated by enzymatic cleavage into a C3a portion, a classic anaphylatoxin that functions as chemoattractant and immune cell activator, and the C3b portion, the body's most potent opsonin. C3 cleavage is in most cases mediated by an enzyme complex called the C3 convertase. However, it is now becoming increasingly clear that the cleavage of C3 by a range of 'single' proteases into bioactive C3a and C3b fragments is of high physiological significance. Here, we describe a protocol for the enzymatic cleavage of human C3 by the serine protease cathepsin L and the detection of the cleavage products C3a and C3b by western blotting as an example for this kind of enzymatic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...