Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 11(7): 936-951, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28958187

RESUMO

Nano-sized metal oxides are currently the most manufactured nanomaterials (NMs), and are increasingly used in consumer products. Recent exposure data reveal a genuine potential for adverse health outcomes for a vast array of NMs, however the underlying mechanisms are not fully understood. To elucidate size-related molecular effects, differentiated THP-1 cells were exposed to nano-sized materials (n-TiO2, n-ZnO and n-Ag), or their bulk-sized (b-ZnO and b-TiO2) or ionic (i-Ag) counterparts, and genome-wide gene expression changes were studied at low-toxic concentrations (<15% cytotoxicity). TiO2 materials were nontoxic in MTT assay, inducing only minor transcriptional changes. ZnO and Ag elicited dose-dependent cytotoxicity, wherein ionic and particulate effects were synergistic with respect to n-ZnO-induced cytotoxicity. In gene expression analyzes, 6 h and 24 h samples formed two separate hierarchical clusters. N-ZnO and n-Ag shared only 3.1% and 24.6% differentially expressed genes (DEGs) when compared to corresponding control. All particles, except TiO2, activated various metallothioneins. At 6 h, n-Zn, b-Zn and n-Ag induced various immunity related genes associating to pattern recognition (including toll-like receptor), macrophage maturation, inflammatory response (TNF and IL-1beta), chemotaxis (CXCL8) and leucocyte migration (CXCL2-3 and CXCL14). After 24 h exposure, especially n-Ag induced the expression of genes related to virus recognition and type I interferon responses. These results strongly suggest that in addition to ionic effects mediated by metallothioneins, n-Zn and n-Ag induce expression of genes involved in several innate and adaptive immunity associated pathways, which are known to play crucial role in immuno-regulation. This raises the concern of safe use of metal oxide and metal nanoparticle products, and their biological effects.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Prata/toxicidade , Titânio/toxicidade , Viroses/imunologia , Óxido de Zinco/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Células THP-1 , Fatores de Tempo , Viroses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA