Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6645): 656-658, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167392

RESUMO

A tidal disruption event (TDE) occurs when a supermassive black hole rips apart a passing star. Part of the stellar material falls toward the black hole, forming an accretion disk that in some cases launches a relativistic jet. We performed optical polarimetry observations of a TDE, AT 2020mot. We find a peak linear polarization degree of 25 ± 4%, consistent with highly polarized synchrotron radiation, as is typically observed from relativistic jets. However, our radio observations, taken up to 8 months after the optical peak, do not detect the corresponding radio emission expected from a relativistic jet. We suggest that the linearly polarized optical emission instead arises from shocks that occur during accretion disk formation, as the stream of stellar material collides with itself.

2.
Nature ; 462(7273): 620-3, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19935645

RESUMO

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...