Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4657, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405138

RESUMO

Guaianolides are an important class of sesquiterpene lactones with unique biological and pharmaceutical properties. They have been postulated to be derived from germacranolides, but for years no progress has been made in the elucidation of their biosynthesis that requires an unknown cyclization mechanism. Here we demonstrate the isolation and characterization of a cytochrome P450 from feverfew (Tanacetum parthenium), kauniolide synthase. Kauniolide synthase catalyses the formation of the guaianolide kauniolide from the germacranolide substrate costunolide. Unlike most cytochrome P450s, kauniolide synthase combines stereoselective hydroxylation of costunolide at the C3 position, with water elimination, cyclization and regioselective deprotonation. This unique mechanism of action is supported by in silico modelling and docking experiments. The full kauniolide biosynthesis pathway is reconstructed in the heterologous hosts Nicotiana benthamiana and yeast, paving the way for biotechnological production of guaianolide-type sesquiterpene lactones.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Vias Biossintéticas , Ciclização , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tanacetum/enzimologia , Nicotiana/metabolismo
2.
Mol Plant ; 8(3): 454-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598143

RESUMO

Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this process, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respectively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinfiltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome-mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related protease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.


Assuntos
Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Proteínas SNARE/genética , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Engenharia Metabólica , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Sesquiterpenos Policíclicos , Proteínas SNARE/metabolismo , Sesquiterpenos/química , Nicotiana/genética
3.
PLoS One ; 7(5): e36982, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606321

RESUMO

Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM) competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-)culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms.


Assuntos
Técnicas Microbiológicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Cocultura/instrumentação , Desenho de Equipamento , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala/instrumentação , Microscopia de Fluorescência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...