Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3567, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347085

RESUMO

Excessive loads at lower limb joints can lead to pain and degenerative diseases. Altering joint loads with muscle coordination retraining might help to treat or prevent clinical symptoms in a non-invasive way. Knowing how much muscle coordination retraining can reduce joint loads and which muscles have the biggest impact on joint loads is crucial for personalized gait retraining. We introduced a simulation framework to quantify the potential of muscle coordination retraining to reduce joint loads for an individuum. Furthermore, the proposed framework enables to pinpoint muscles, which alterations have the highest likelihood to reduce joint loads. Simulations were performed based on three-dimensional motion capture data of five healthy adolescents (femoral torsion 10°-29°, tibial torsion 19°-38°) and five patients with idiopathic torsional deformities at the femur and/or tibia (femoral torsion 18°-52°, tibial torsion 3°-50°). For each participant, a musculoskeletal model was modified to match the femoral and tibial geometry obtained from magnetic resonance images. Each participant's model and the corresponding motion capture data were used as input for a Monte Carlo analysis to investigate how different muscle coordination strategies influence joint loads. OpenSim was used to run 10,000 simulations for each participant. Root-mean-square of muscle forces and peak joint contact forces were compared between simulations. Depending on the participant, altering muscle coordination led to a maximum reduction in hip, knee, patellofemoral and ankle joint loads between 5 and 18%, 4% and 45%, 16% and 36%, and 2% and 6%, respectively. In some but not all participants reducing joint loads at one joint increased joint loads at other joints. The required alteration in muscle forces to achieve a reduction in joint loads showed a large variability between participants. The potential of muscle coordination retraining to reduce joint loads depends on the person's musculoskeletal geometry and gait pattern and therefore showed a large variability between participants, which highlights the usefulness and importance of the proposed framework to personalize gait retraining.


Assuntos
Marcha , Músculos , Adolescente , Humanos , Método de Monte Carlo , Marcha/fisiologia , Fêmur/fisiologia , Tíbia/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia
2.
Front Sports Act Living ; 5: 1251089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927449

RESUMO

Introduction: Climbing imposes substantial demands on the upper limbs and understanding the mechanical loads experienced by the joints during climbing movements is crucial for injury prevention and optimizing training protocols. This study aimed to quantify and compare upper limb joint loads and muscle activations during isometric finger hanging exercises with different arm lock-off positions. Methods: Seventeen recreational climbers performed six finger dead hangs with arm lock-offs at 90° and 135° of elbow flexion, as well as arms fully extended. Upper limb joint moments were calculated using personalized models in OpenSim, based on three-dimensional motion capture data and forces measured on an instrumented hang board. Muscle activations of upper limb muscles were recorded with surface electromyography electrodes. Results: Results revealed that the shoulder exhibited higher flexion moments during arm lock-offs at 90° compared to full extension (p = 0.006). The adduction moment was higher at 135° and 90° compared to full extension (p < 0.001), as well as the rotation moments (p < 0.001). The elbows exhibited increasing flexion moments with the increase in the arm lock-off angle (p < 0.001). Muscle activations varied across conditions for biceps brachii (p < 0.001), trapezius (p < 0.001), and latissimus dorsi, except for the finger flexors (p = 0.15). Discussion: Our findings indicate that isometric finger dead hangs with arms fully extended are effective for training forearm force capacities while minimizing stress on the elbow and shoulder joints. These findings have important implications for injury prevention and optimizing training strategies in climbing.

3.
PLoS One ; 18(9): e0291789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751435

RESUMO

Gait asymmetry and skeletal deformities are common in many children with cerebral palsy (CP). Changes of the hip joint loading, i.e. hip joint contact force (HJCF), can lead to pathological femoral growth. A child's gait pattern and femoral morphology affect HJCFs. The twofold aim of this study was to (1) evaluate if the asymmetry in HJCFs is higher in children with CP compared to typically developing (TD) children and (2) identify if the bony morphology or the subject-specific gait pattern is the main contributor to asymmetric HJCFs. Magnetic resonance images (MRI) and three-dimensional gait analysis data of twelve children with CP and fifteen TD children were used to create subject-specific musculoskeletal models and calculate HJCF using OpenSim. Root-mean-square-differences between left and right HJCF magnitude and orientation were computed and compared between participant groups (CP versus TD). Additionally, the influence on HJCF asymmetries solely due to the femoral morphology and solely due to the gait pattern was quantified. Our findings demonstrate that the gait pattern is the main contributor to asymmetric HJCFs in CP and TD children. Children with CP have higher HJCF asymmetries which is probably the result of larger asymmetries in their gait pattern compared to TD children. The gained insights from our study highlight that clinical interventions should focus on normalizing the gait pattern and therefore the hip joint loading to avoid the development of femoral deformities.


Assuntos
Paralisia Cerebral , Marcha , Criança , Humanos , Análise da Marcha , Paralisia Cerebral/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem
4.
Front Bioeng Biotechnol ; 11: 1140527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911204

RESUMO

Little is known about the influence of mechanical loading on growth plate stresses and femoral growth. A multi-scale workflow based on musculoskeletal simulations and mechanobiological finite element (FE) analysis can be used to estimate growth plate loading and femoral growth trends. Personalizing the model in this workflow is time-consuming and therefore previous studies included small sample sizes (N < 4) or generic finite element models. The aim of this study was to develop a semi-automated toolbox to perform this workflow and to quantify intra-subject variability in growth plate stresses in 13 typically developing (TD) children and 12 children with cerebral palsy (CP). Additionally, we investigated the influence of the musculoskeletal model and the chosen material properties on the simulation results. Intra-subject variability in growth plate stresses was higher in cerebral palsy than in typically developing children. The highest osteogenic index (OI) was observed in the posterior region in 62% of the TD femurs while in children with CP the lateral region was the most common (50%). A representative reference osteogenic index distribution heatmap generated from data of 26 TD children's femurs showed a ring shape with low values in the center region and high values at the border of the growth plate. Our simulation results can be used as reference values for further investigations. Furthermore, the code of the developed GP-Tool ("Growth Prediction-Tool") is freely available on GitHub (https://github.com/WilliKoller/GP-Tool) to enable peers to conduct mechanobiological growth studies with larger sample sizes to improve our understanding of femoral growth and to support clinical decision making in the near future.

5.
Front Sports Act Living ; 3: 695383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497999

RESUMO

An increase in hip joint contact forces (HJCFs) is one of the main contributing mechanical causes of hip joint pathologies, such as hip osteoarthritis, and its progression. The strengthening of the surrounding muscles of the joint is a way to increase joint stability, which results in the reduction of HJCF. Most of the exercise recommendations are based on expert opinions instead of evidence-based facts. This study aimed to quantify muscle forces and joint loading during rehabilitative exercises using an elastic resistance band (ERB). Hip exercise movements of 16 healthy volunteers were recorded using a three-dimensional motion capture system and two force plates. All exercises were performed without and with an ERB and two execution velocities. Hip joint kinematics, kinetics, muscle forces, and HJCF were calculated based on the musculoskeletal simulations in OpenSim. Time-normalized waveforms of the different exercise modalities were compared with each other and with reference values found during walking. The results showed that training with an ERB increases both target muscle forces and HJCF. Furthermore, the ERB reduced the hip joint range of motion during the exercises. The type of ERB used (soft vs. stiff ERB) and the execution velocity of the exercise had a minor impact on the peak muscle forces and HJCF. The velocity of exercise execution, however, had an influence on the total required muscle force. Performing hip exercises without an ERB resulted in similar or lower peak HJCF and lower muscle forces than those found during walking. Adding an ERB during hip exercises increased the peak muscle and HJCF but the values remained below those found during walking. Our workflow and findings can be used in conjunction with future studies to support exercise design.

6.
Gait Posture ; 87: 65-74, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894464

RESUMO

BACKGROUND: Musculoskeletal simulations are widely used in the research community. The locations of surface markers are mostly used to scale a generic model to the participant's anthropometry. Marker-based scaling approaches include errors due to inaccuracies in marker placements. RESEARCH QUESTION: How do scaling errors of the thigh and shank segments influence simulation results? METHODS: Motion capture data and magnetic resonance images from a child with cerebral palsy and a typically developing child were used to create a subject-specific reference model for each child. These reference models were modified to mimic scaling errors due to inaccurately placed lateral epicondyle markers, which are frequently used to scale the thigh and shank segments. The thigh length was altered in 1 % steps from the original length and the shank length was accordingly adjusted to keep the total leg length constant. Thirty additional models were created, which included models with an altered thigh length of ±15 %. Subsequently, musculoskeletal simulations with OpenSim were performed with all models. Joint kinematics, joint kinetics, muscle forces and joint contact forces (JCF) were compared between the reference and altered models. RESULTS: The investigated scaling error influenced joint kinematics and joint kinetics by up to 9.4° (hip flexion angle) and 0.15 Nm/kg (knee flexion moment), respectively. Maximum muscle and JCF differences of 46 % (medial gastrocnemius) and 72 % (hip JCF) bodyweight, respectively, were observed between the reference and altered models. Scaling errors mainly changed the magnitude but not the shape of most analyzed parameters. The influence of scaling errors on simulation results were similar in both participants. SIGNIFICANCE: Scaling errors of the thigh segment influence simulation results at all joints due to the global optimization approach used in musculoskeletal simulations. Our findings can be used to estimate potential errors due to marker-based scaling approaches in previous and future studies.


Assuntos
Perna (Membro) , Coxa da Perna , Fenômenos Biomecânicos , Criança , Simulação por Computador , Marcha , Humanos , Articulação do Joelho , Modelos Biológicos , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...