Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5131, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612271

RESUMO

The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.


Assuntos
Nanoporos , Polímeros , Substâncias Macromoleculares , Ligante de CD40 , Solventes
2.
J Colloid Interface Sci ; 615: 265-272, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35144228

RESUMO

HYPOTHESIS: Preparation of suspensions of nanoparticles (>1 wt%) coated with a polyelectrolyte multilayers is a challenging task because of the risk of flocculation when a polyelectrolyte is added to a suspension of oppositely charged nanoparticles. This situation can be avoided if the charge density of the polymers and particles is controlled during mixing so as to separate mixing and adsorption events. EXPERIMENTS: The cationic polyethylenimine (PEI) and the anionic carboxymethylcellulose (CMC) were used as weak polyelectrolytes. Polyelectrolyte multilayers build-up was conducted by reducing the charge of one of the components during the addition of the next component. Charge density was controlled by tuning pH. Analysis of the suspension of coated nanoparticles was done by means of dynamic light scattering, electrophoresis and small angle x-ray scattering measurements, while quartz crystal microbalance was used to study the build-up process on flat silica surfaces. FINDINGS: Charge density, controlled through pH, can be used as a tool to avoid flocculation during layer-by-layer deposition of polyelectrolytes on 20 nm silica particles at high concentration (∼40 wt%). When added to silica at pH 3, PEI did not induce flocculation. Adsorption was triggered by raising the pH to 11, pH at which CMC could be added. The pH was then lowered to 3. The process was repeated, and up to five polyelectrolyte layers were deposited on concentrated silica nanoparticles while inducing minimal aggregation.


Assuntos
Nanopartículas , Dióxido de Silício , Eletrólitos/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polieletrólitos/química , Suspensões
3.
Nanomaterials (Basel) ; 10(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397118

RESUMO

The conservation of textiles is a challenge due to the often fast degradation that results from the acidity combined with a complex structure that requires remediation actions to be conducted at several length scales. Nanomaterials have lately been used for various purposes in the conservation of cultural heritage. The advantage with these materials is their high efficiency combined with a great control. Here, we provide an overview of the latest developments in terms of nanomaterials-based alternatives, namely inorganic nanoparticles and nanocellulose, to conventional methods for the strengthening and deacidification of cellulose-based materials. Then, using the case of iron-tannate dyed cotton, we show that conservation can only be addressed if the mechanical strengthening is preceded by a deacidification step. We used CaCO3 nanoparticles to neutralize the acidity, while the stabilisation was addressed by a combination of nanocellulose, and silica nanoparticles, to truly tackle the complexity of the hierarchical nature of cotton textiles. Silica nanoparticles enabled strengthening at the fibre scale by covering the fibre surface, while the nanocellulose acted at bigger length scales. The evaluation of the applied treatments, before and after an accelerated ageing, was assessed by tensile testing, the fibre structure by SEM and the apparent colour changes by colourimetric measurements.

4.
Carbohydr Polym ; 194: 161-169, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801824

RESUMO

Nanocellulose has been recently proposed as a novel consolidant for historical papers. Its use for painting canvas consolidation, however, remains unexplored. Here, we show for the first time how different nanocelluloses, namely mechanically isolated cellulose nanofibrils (CNF), carboxymethylated cellulose nanofibrils (CCNF) and cellulose nanocrystals (CNC), act as a bio-based alternative to synthetic resins and other conventional canvas consolidants. Importantly, we demonstrate that compared to some traditional consolidants, all tested nanocelluloses provided reinforcement in the adequate elongation regime. CCNF showed the best consolidation per added weight; however, it had to be handled at very low solids content compared to other nanocelluloses, exposing canvases to larger water volumes. CNC reinforced the least per added weight but could be used in more concentrated suspensions, giving the strongest consolidation after an equivalent number of coatings. CNF performed between CNC and CCNF. All nanocelluloses showed better consolidation than lining with synthetic adhesive (Beva 371) and linen canvas in the elongation region of interest.

5.
Langmuir ; 30(39): 11650-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25216210

RESUMO

We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.


Assuntos
Proteínas Imobilizadas/química , Silicatos/química , Adsorção , Animais , Ouro/química , Concentração de Íons de Hidrogênio , Técnicas de Microbalança de Cristal de Quartzo , Silício/química , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 5(7): 2485-94, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23406201

RESUMO

We have investigated two different concepts to synthesize redox active polymer brushes using surface initiated atomic transfer radical polymerization (SI-ATRP). This polymerization technique allows the synthesis of well-defined grafted polymer brushes. In the initial step the surface was functionalized with a self-assembling monolayer of the SI-ATRP starter. Then, polymer brushes carrying phenothiazine moieties were grafted from the surface via SI-ATRP. The first concept consists of polymerizing monomers with phenothiazine pendant moieties to directly incorporate the redox functionality as side group in the growing polymer brush. The second concept consists of using grafted activated ester brushes which are functionalized with phenothiazine redox moieties in a successive reaction step. The electrochemical properties of the grafted redox active brushes were examined by cyclic voltammetry. Furthermore, the surface morphology and the chemical composition of the polymer brushes were characterized using scanning force microscopy (SFM), X-ray techniques, and UV/vis spectroscopy. Apart from their redox behavior, the synthesized brushes revealed increased mechanical stability on the nanoscale.

7.
J Colloid Interface Sci ; 374(1): 135-40, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22405581

RESUMO

In the study we demonstrate a method to obtain stable, exfoliated montmorillonite-protein complexes by adsorption of the proteins extracted from hen-egg albumen. Analysis of the process by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the complexes are formed by sequential adsorption of ovotransferrin, ovalbumins, ovomucoid and lysozyme on the surface of the silicate. Structural studies performed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the adsorption of ovotransferrin and albumins is accompanied by disintegration of clay stacks into discrete platelets. Further analysis by dynamic light scattering (DLS) revealed that at protein to silicate weight ratios exceeding 20, the synergistic adsorption of albumen components leads to reaggregation of silicate platelets into disordered, microgel-like particles. By means of DLS it was found that exfoliation predominantly leads to formation of particles with average hydrodynamic radii (R(h)) of 0.19 µm while their aggregation causes formation of particles having R(h) in of approx. 0.5 µm and larger.


Assuntos
Bentonita/química , Materiais Biocompatíveis/química , Proteínas do Ovo/química , Adsorção , Animais , Galinhas , Ovos , Eletroforese em Gel de Poliacrilamida , Luz , Microscopia Eletrônica de Transmissão , Nanopartículas , Tamanho da Partícula , Soluções , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...