Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36836630

RESUMO

In this work, we synthesized chitosan 5 kDa conjugates with ß-cyclodextrins with various substituents as promising mucoadhesive carriers for the delivery of fluoroquinolones using the example of levofloxacin. The obtained conjugates were comprehensively characterized by spectral methods (UV-Vis, ATR-FTIR, 1H NMR, SEM). The physico-chemical properties of the complex formations were studied by IR, UV, and fluorescence spectroscopy. The dissociation constants of complexes with levofloxacin were determined. Complexation with conjugates provided four times slower drug release in comparison with plain CD and more than 20 times in comparison with the free drug. The antibacterial activity of the complexes was tested on model microorganisms Gram-negative bacteria Escherichia coli ATCC 25922 and Gram-positive Bacillus subtilis ATCC 6633. The complex with the conjugate demonstrated the same initial levofloxacin antibacterial activity but provided significant benefits, e.g., prolonged release.

2.
Chem Phys Lipids ; 228: 104891, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057752

RESUMO

Most drugs besides their intended activity, express undesired side effects, including those with the engagement of cell membrane. Previously, such undesired nonspecific effects on the membrane have been shown for a number of widely used nonsteroidal anti-inflammatory drugs. In this paper, we study the mechanism of interaction between moxifloxacin (Mox), antibacterial drug of broad specificity, with lipid bilayer of the liposomes of various compositions as a model of cell membrane using a combination of spectroscopy methods, including ATR-FTIR spectroscopy, circular dichroism, UV and fluorescence spectroscopy. The fine structure of the moxifloxacin-liposome complex, localization of the drug in bilayer and the main sites of Mox interaction with lipid membrane were determined. Lipid composition of the liposome plays a key role in the interaction with moxifloxacin, drastically affecting the loading efficiency, strength and character of drug binding, lipid phase segregation and phase transition parameters. In case of anionic liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and cardiolipin (CL2-) the electrostatic interaction of negatively charged nitrogen in heterocycle moiety of moxifloxacin with cardiolipin phosphate groups is a crucial factor for stable complex formation. The study of moxifloxacin-liposome complex behavior at phase transition in bilayer by DSC method revealed that in DPPC/CL2- liposomes system two microphases with different content of CL2- coexist and Mox interacts with both of these microphases resulting in the formation of two types of complexes with different structure and phase transition temperature. This binding stabilized the gel-state of the lipid bilayer with increasing the phase transition temperature Tm up to 3-5 °C. A different situation is observed for neutral DPPC liposomes: drug interaction with bilayer results in defects formation and a fluidization effect in lipid bilayer, resulted to decrease the Tm value by 2-4 °C. Moxifloxacin is not firmly binding in the membrane of DPPC and drug releases rapidly.


Assuntos
Antibacterianos/farmacologia , Bicamadas Lipídicas/química , Moxifloxacina/farmacologia , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Estrutura Molecular , Transição de Fase , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...