Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(4): 764-777, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429390

RESUMO

Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.


Assuntos
Restrição Calórica , Jejum , Proteoma , Humanos , Proteoma/metabolismo , Feminino , Masculino , Adulto , Redução de Peso , Proteômica/métodos , Adaptação Fisiológica
2.
Acta Physiol (Oxf) ; 236(4): e13862, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377504

RESUMO

Extracellular vesicles induced by exercise have emerged as potential mediators of tissue crosstalk. Extracellular vesicles and their cargo miRNAs have been linked to dysglycemia and obesity in animal models, but their role in humans is unclear. AIM: The aim of the study was to characterize the miRNA content in plasma extracellular vesicle isolates after acute and long-term exercise and to study associations between extracellular vesicle miRNAs, mRNA expression in skeletal muscle and adipose tissue, and cardiometabolic risk factors. METHODS: Sedentary men with or without dysglycemia and overweight underwent an acute bicycle test and a 12-week exercise intervention with extensive metabolic phenotyping. Gene expression in m. vastus lateralis and subcutaneous adipose tissue was measured with RNA sequencing. Extracellular vesicles were purified from plasma with membrane affinity columns or size exclusion chromatography. RESULTS: Extracellular vesicle miRNA profiling revealed a transient increase in the number of miRNAs after acute exercise. We identified miRNAs, such as miR-652-3p, that were associated to insulin sensitivity and adiposity. By performing explorative association analyses, we identified two miRNAs, miR-32-5p and miR-339-3p, that were strongly correlated to an adipose tissue macrophage signature. CONCLUSION: Numerous miRNAs in plasma extracellular vesicle isolates were increased by exercise, and several miRNAs correlated to insulin sensitivity and adiposity. Our findings warrant future studies to characterize exercise-induced extracellular vesicles and cargo miRNA to clarify where exercise-induced extracellular vesicles originate from, and to determine whether they influence metabolic health or exercise adaptation.


Assuntos
Vesículas Extracelulares , Resistência à Insulina , MicroRNAs , Humanos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Sobrepeso , Vesículas Extracelulares/metabolismo , Exercício Físico/fisiologia , Obesidade/genética , Obesidade/metabolismo
3.
PLoS One ; 12(4): e0175441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403174

RESUMO

BACKGROUND AND AIMS: Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. METHODS: Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI) < 25 kg/m2) or overweight (BMI ≥ 25 kg/m2) were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes. RESULTS: The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. CONCLUSIONS: 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.


Assuntos
Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Células Cultivadas , Metilação de DNA , Epigênese Genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Treinamento Resistido , Transcriptoma
4.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28270597

RESUMO

The hepatokine fetuin-A can together with free fatty acids (FFAs) enhance adipose tissue (AT) inflammation and insulin resistance via toll-like receptor 4 (TLR4). Although some of the health benefits of exercise can be explained by altered release of myokines from the skeletal muscle, it is not well documented if some of the beneficial effects of exercise can be explained by altered secretion of hepatokines. The aim of this study was to examine the effect of interaction between fetuin-A and FFAs on insulin sensitivity after physical exercise. In this study, 26 sedentary men who underwent 12 weeks of combined endurance and strength exercise were included. Insulin sensitivity was measured using euglycemic-hyperinsulinemic clamp, and AT insulin resistance was indicated by the product of fasting plasma concentration of FFAs and insulin. Blood samples and biopsies from skeletal muscle and subcutaneous AT were collected. Several phenotypic markers were measured, and mRNA sequencing was performed on the biopsies. AT macrophages were analyzed based on mRNA markers. The intervention improved hepatic parameters, reduced plasma fetuin-A concentration (~11%, P < 0.01), slightly changed FFAs concentration, and improved glucose infusion rate (GIR) (~33%, P < 0.01) across all participants. The change in circulating fetuin-A and FFAs interacted to predict some of the change in GIR (ß = -42.16, P = 0.030), AT insulin resistance (ß = 0.579, P = 0.003), gene expression related to TLR-signaling in AT and AT macrophage mRNA (ß = 94.10, P = 0.034) after exercise. We observed no interaction effects between FFAs concentrations and leptin and adiponectin on insulin sensitivity, or any interaction effects between Fetuin-A and FFAs concentrations on skeletal muscle TLR-signaling. The relationship between FFAs levels and insulin sensitivity seemed to be specific for fetuin-A and the AT Some of the beneficial effects of exercise on insulin sensitivity may be explained by changes in circulating fetuin-A and FFAs, promoting less TLR4 signaling in AT perhaps by modulating AT macrophages.


Assuntos
Glicemia/metabolismo , Exercício Físico/fisiologia , Ácidos Graxos não Esterificados/sangue , Músculo Esquelético/fisiologia , alfa-2-Glicoproteína-HS/metabolismo , Adiponectina/sangue , Técnica Clamp de Glucose , Humanos , Resistência à Insulina/fisiologia , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Resistência Física/fisiologia , Treinamento Resistido , Receptor 4 Toll-Like/metabolismo
5.
Physiol Rep ; 4(21)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27821717

RESUMO

Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético/genética , Terapia por Exercício/métodos , Exercício Físico/fisiologia , Imageamento por Ressonância Magnética/métodos , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Peso Corporal , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina , Macrófagos/imunologia , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Obesidade/imunologia , Sobrepeso , Resistência Física/fisiologia , Comportamento Sedentário , Linfócitos T/metabolismo
6.
PLoS One ; 11(4): e0153229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27078151

RESUMO

Intake of protein immediately after exercise stimulates protein synthesis but improved recovery of performance is not consistently observed. The primary aim of the present study was to compare performance 18 h after exhaustive cycling in a randomized diet-controlled study (175 kJ·kg(-1) during 18 h) when subjects were supplemented with protein plus carbohydrate or carbohydrate only in a 2-h window starting immediately after exhaustive cycling. The second aim was to investigate the effect of no nutrition during the first 2 h and low total energy intake (113 kJ·kg(-1) during 18 h) on performance when protein intake was similar. Eight endurance-trained subjects cycled at 237±6 Watt (~72% VO2max) until exhaustion (TTE) on three occasions, and supplemented with 1.2 g carbohydrate·kg(-1)·h(-1) (CHO), 0.8 g carbohydrate + 0.4 g protein·kg(-1)·h(-1) (CHO+PRO) or placebo without energy (PLA). Intake of CHO+PROT increased plasma glucose, insulin, and branch chained amino acids, whereas CHO only increased glucose and insulin. Eighteen hours later, subjects performed another TTE at 237±6 Watt. TTE was increased after intake of CHO+PROT compared to CHO (63.5±4.4 vs 49.8±5.4 min; p<0.05). PLA reduced TTE to 42.8±5.1 min (p<0.05 vs CHO). Nitrogen balance was positive in CHO+PROT, and negative in CHO and PLA. In conclusion, performance was higher 18 h after exhaustive cycling with intake of CHO+PROT compared to an isocaloric amount of carbohydrate during the first 2 h post exercise. Intake of a similar amount of protein but less carbohydrate during the 18 h recovery period reduced performance.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Carboidratos da Dieta/farmacologia , Proteínas Alimentares/farmacologia , Resistência Física/efeitos dos fármacos , Aminoácidos/sangue , Análise de Variância , Glicemia/metabolismo , Creatina Quinase/sangue , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Método Duplo-Cego , Teste de Esforço , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Glicerol/sangue , Humanos , Insulina/sangue , L-Lactato Desidrogenase/sangue , Masculino , Mioglobina/sangue , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Fatores de Tempo , Adulto Jovem
7.
Biochem Biophys Res Commun ; 450(2): 1089-94, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24996176

RESUMO

The health-promoting effects of regular exercise are well known, and myokines may mediate some of these effects. The small leucine-rich proteoglycan decorin has been described as a myokine for some time. However, its regulation and impact on skeletal muscle has not been investigated in detail. In this study, we report decorin to be differentially expressed and released in response to muscle contraction using different approaches. Decorin is released from contracting human myotubes, and circulating decorin levels are increased in response to acute resistance exercise in humans. Moreover, decorin expression in skeletal muscle is increased in humans and mice after chronic training. Because decorin directly binds myostatin, a potent inhibitor of muscle growth, we investigated a potential function of decorin in the regulation of skeletal muscle growth. In vivo overexpression of decorin in murine skeletal muscle promoted expression of the pro-myogenic factor Mighty, which is negatively regulated by myostatin. We also found Myod1 and follistatin to be increased in response to decorin overexpression. Moreover, muscle-specific ubiquitin ligases atrogin1 and MuRF1, which are involved in atrophic pathways, were reduced by decorin overexpression. In summary, our findings suggest that decorin secreted from myotubes in response to exercise is involved in the regulation of muscle hypertrophy and hence could play a role in exercise-related restructuring processes of skeletal muscle.


Assuntos
Decorina/metabolismo , Contração Muscular , Músculo Esquelético/fisiologia , Adolescente , Adulto , Animais , Células Cultivadas , Exercício Físico , Feminino , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Condicionamento Físico Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...