Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 1: 1-8, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30657374

RESUMO

Radiomics is a quantitative approach to medical image analysis targeted at deciphering the morphologic and functional features of a lesion. Radiomic methods can be applied across various malignant conditions to identify tumor phenotype characteristics in the images that correlate with their likelihood of survival, as well as their association with the underlying biology. Identifying this set of characteristic features, called tumor signature, holds tremendous value in predicting the behavior and progression of cancer, which in turn has the potential to predict its response to various therapeutic options. We discuss the technical challenges encountered in the application of radiomics, in terms of methodology, workflow integration, and user experience, that need to be addressed to harness its true potential.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Oncologia , Inteligência Artificial , Biomarcadores , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Informática Médica/métodos , Informática Médica/normas , Oncologia/métodos , Oncologia/normas , Fluxo de Trabalho
2.
J Pathol Inform ; 7: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217972

RESUMO

BACKGROUND: Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. METHODS: An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. RESULTS: There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. CONCLUSION: Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.

3.
J Pathol Inform ; 5(1): 10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24843822

RESUMO

INTRODUCTION: Telepathology allows the digital transmission of images for rapid access to pathology experts. Recent technologic advances in smartphones have allowed them to be used to acquire and transmit digital images of the glass slide, representing cost savings and efficiency gains over traditional forms of telepathology. We report our experience with developing an iPhone application (App - Pocket Pathologist) to facilitate rapid diagnostic pathology teleconsultation utilizing a smartphone. MATERIALS AND METHODS: A secure, web-based portal (http://pathconsult.upmc.com/) was created to facilitate remote transmission of digital images for teleconsultation. The App augments functionality of the web-based portal and allows the user to quickly and easily upload digital images for teleconsultation. Image quality of smartphone cameras was evaluated by capturing images using different adapters that directly attach phones to a microscope ocular lens. RESULTS: The App was launched in August 2013. The App facilitated easy submission of cases for teleconsultation by limiting the number of data entry fields for users and enabling uploading of images from their smartphone's gallery wirelessly. Smartphone cameras properly attached to a microscope create static digital images of similar quality to a commercial digital microscope camera. CONCLUSION: Smartphones have great potential to support telepathology because they are portable, provide ubiquitous internet connectivity, contain excellent digital cameras, and can be easily attached to a microscope. The Pocket Pathologist App represents a significant reduction in the cost of creating digital images and submitting them for teleconsultation. The iPhone App provides an easy solution for global users to submit digital pathology images to pathology experts for consultation.

4.
J Digit Imaging ; 27(2): 192-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24149968

RESUMO

The adoption of social media technologies appears to enhance clinical outcomes through improved communications as reported by Bacigalupe (Fam Syst Heal 29(1):1-14, 2011). The ability of providers to more effectively, directly, and rapidly communicate among themselves as well as with patients should strengthen collaboration and treatment as reported by Bacigalupe (Fam Syst Heal 29(1):1-14, 2011). This paper is a case study in one organization's development of an internally designed and developed social technology solution termed "Unite." The Unite system combines social technologies' features including push notifications, messaging, community groups, and user lists with clinical workflow and applications to construct dynamic provider networks, simplify communications, and facilitate clinical workflow optimization. Modeling Unite as a social technology may ease adoption barriers. Developing a social network that is integrated with healthcare information systems in the clinical space opens the doors to capturing and studying the way in which providers communicate. The Unite system appears to have the potential to breaking down existing communication paradigms. With Unite, a rich set of usage data tied to clinical events may unravel alternative networks that can be leveraged to advance patient care.


Assuntos
Relações Médico-Paciente , Sistemas de Informação em Radiologia , Apoio Social , Técnicas de Apoio para a Decisão , Difusão de Inovações , Humanos , Disseminação de Informação , Gestão da Informação , Internet , Aplicações da Informática Médica
5.
J Digit Imaging ; 25(6): 744-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22766799

RESUMO

As hospitals move towards providing in-house 24 × 7 services, there is an increasing need for information systems to be available around the clock. This study investigates one organization's need for a workflow continuity solution that provides around the clock availability for information systems that do not provide highly available services. The organization investigated is a large multifacility healthcare organization that consists of 20 hospitals and more than 30 imaging centers. A case analysis approach was used to investigate the organization's efforts. The results show an overall reduction in downtimes where radiologists could not continue their normal workflow on the integrated Picture Archiving and Communications System (PACS) solution by 94 % from 2008 to 2011. The impact of unplanned downtimes was reduced by 72 % while the impact of planned downtimes was reduced by 99.66 % over the same period. Additionally more than 98 h of radiologist impact due to a PACS upgrade in 2008 was entirely eliminated in 2011 utilizing the system created by the workflow continuity approach. Workflow continuity differs from high availability and business continuity in its design process and available services. Workflow continuity only ensures that critical workflows are available when the production system is unavailable due to scheduled or unscheduled downtimes. Workflow continuity works in conjunction with business continuity and highly available system designs. The results of this investigation revealed that this approach can add significant value to organizations because impact on users is minimized if not eliminated entirely.


Assuntos
Eficiência Organizacional , Serviço Hospitalar de Radiologia/organização & administração , Sistemas de Informação em Radiologia/organização & administração , Fluxo de Trabalho , Humanos , Armazenamento e Recuperação da Informação , Estudos de Casos Organizacionais , Software , Integração de Sistemas
6.
J Pathol Inform ; 3: 10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530178

RESUMO

BACKGROUND: Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS) is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS). METHODS: Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system's image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM) Wrapper (EDW) server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then "wrapped" according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. RESULTS: In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688) to the EIS was 98 seconds. Only 45 cases (0.5%) failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. CONCLUSIONS: Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a "DICOM wrapper" for multisystem compatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...