Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Sci Educ ; 16(2): 196-208, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571469

RESUMO

Anatomy is increasingly taught using computer-assisted learning tools, including electronic interactive anatomy dissection tables. Anatomage was he first virtual anatomy dissection table introduced in Russian medical universities and gained popularity among lecturers and students. The Pirogov interactive anatomy table was recently released, but the strengths and weakness of each platform is currently unknown. The objective of this article is to survey lecturers in anatomy to understand their perspectives on the Pirogov versus Anatomage virtual dissection tables' application to teaching in medical universities. A total of 80 anatomy educators from 12 Russian universities, using Anatomage (n = 40) and Pirogov (n = 40) tables were surveyed regarding their satisfaction with the application of the respective tables. Using a five-point Likert scale, both tables were assessed, and responses were statistically analyzed. In addition, qualitative analysis was performed on free response comments provided by survey respondents. There was no significant difference in overall satisfaction ratings between Pirogov (4.38 ± 0.53) and Anatomage (3.94 ± 0.60) interactive tables (p > 0.05). The Anatomage table ranked significantly higher on the accuracy of displayed anatomical details, resolution of the images, and its suitability for teaching senior medical and postgraduate students. Pirogov table performed significantly better on survey items measuring ergonomics, ability to assess students' performance, and teaching basic anatomy to junior first- and second-year medical students. Thus, in summary, anatomists' responses indicated that while both tables are suitable for teaching anatomy, the Pirogov table was superior in undergraduate medical education and the Anatomage table was more beneficial for teaching more senior trainees.


Assuntos
Anatomia , Educação de Graduação em Medicina , Estudantes de Medicina , Masculino , Humanos , Anatomia/educação , Universidades , Currículo , Educação de Graduação em Medicina/métodos , Satisfação Pessoal , Inquéritos e Questionários
2.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956735

RESUMO

Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.

3.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267766

RESUMO

Natural biopolymers demonstrate significant bone and connective tissue-engineering application efficiency. However, the quality of the biopolymer directly depends on microstructure and biochemical properties. This study aims to investigate the biocompatibility and microstructural properties of demineralized human spongiosa Lyoplast® (Samara, Russian Federation). The graft's microstructural and biochemical properties were analyzed by scanning electron microscopy (SEM), micro-computed tomography, Raman spectroscopy, and proteomic analysis. Furthermore, the cell adhesion property of the graft was evaluated using cell cultures and fluorescence microscopy. Microstructural analysis revealed the hierarchical porous structure of the graft with complete removal of the cellular debris and bone marrow components. Moreover, the proteomic analysis confirmed the preservation of collagen and extracellular proteins, stimulating and inhibiting cell adhesion, proliferation, and differentiation. We revealed the adhesion of chondroblast cell cultures in vitro without any evidence of cytotoxicity. According to the study results, demineralized human spongiosa Lyoplast® can be effectively used as the bioactive scaffold for articular hyaline cartilage tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...