Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(16): 6780-6787, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38690535

RESUMO

The properties of MXene flakes, a new class of two-dimensional materials, are strictly determined by their surface termination. The most common termination groups are oxygen-containing (=O or -OH) and fluorine (-F), and their relative ratio is closely related to flake stability and catalytic activity. The surface termination can vary significantly among MXene flakes depending on the preparation route and is commonly determined after flake preparation by using X-ray photoelectron spectroscopy (XPS). In this paper, as an alternative approach, we propose the combination of surface-enhanced Raman spectroscopy (SERS) and artificial neural networks (ANN) for the precise and reliable determination of MXene flakes' (Ti3C2Tx) surface chemistry. Ti3C2Tx flakes were independently prepared by three scientific groups and subsequently measured using three different Raman spectrometers, employing resonant excitation wavelengths. Manual analysis of the SERS spectra did not enable accurate determination of the flake surface termination. However, the combined SERS-ANN approach allowed us to determine the surface termination with a high accuracy. The reliability of the method was verified by using a series of independently prepared samples. We also paid special attention to how the results of the SERS-ANN method are affected by the flake stability and differences in the conditions of flake preparation and Raman measurements. This way, we have developed a universal technique that is independent of the above-mentioned parameters, providing the results with accuracy similar to XPS, but enhanced in terms of analysis time and simplicity.

2.
Heliyon ; 10(9): e30601, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742054

RESUMO

Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.

3.
Inorg Chem ; 63(18): 8215-8221, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38655681

RESUMO

Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.

4.
Polymers (Basel) ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399886

RESUMO

Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.

5.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374464

RESUMO

This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.

6.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433071

RESUMO

In this article, we present a unique combination of techniques focusing on the immobilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the improved phase-separation technique. The procedure consists of two main steps: the preparation of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an immobilization procedure realized by the honeycomb pattern's exposure to an excimer laser in a noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface morphology and chemistry, are characterized in detail in the study. The two-step procedure represents the unique architecture of the surface immobilization process, which reveals a wide range of potential applications, mainly in tissue engineering, but also as substrates for analytical use.

7.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234493

RESUMO

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

8.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145976

RESUMO

The solvent casting method was used for five types of polyvinylidene difluoride (PVDF) nanocomposite film preparation. The effect of nanofillers in PVDF nanocomposite films on the structural, phase, and friction and mechanical properties was examined and compared with that of the natural PVDF film. The surface topography of PVDF nanocomposite films was investigated using a scanning electron microscope (SEM) and correlative imaging (CPEM, combinate AFM and SEM). A selection of 2D CPEM images was used for a detailed study of the spherulitic morphologies (grains size around 6-10 µm) and surface roughness (value of 50-68 nm). The chemical interactions were evaluated by Fourier transform infrared spectroscopy (FTIR). Dominant polar γ-phase in the original PVDF, PVDF_ZnO and PVDF_ZnO/V, the most stable non-polar α-phase in the PVDF_V_CH nanocomposite film and mixture of γ and α phases in the PVDF_V and PVDF_ZnO/V_CH nanocomposite films were confirmed. Moderately hydrophilic PVDF nanocomposite films with water contact angle values (WCA) in the range of 58°-69° showed surface stability with respect to the Zeta potential values. The effect of positive or negative Zeta-potential values of nanofillers (ζn) on the resulting negative Zeta-potential values (ζ) of PVDF nanocomposite films was demonstrated. Interaction of PVDF chains with hydroxy groups of vermiculite and amino and imino groups of CH caused transformation of γ-phase to α. The friction properties were evaluated based on the wear testing and mechanical properties were evaluated from the tensile tests based on Young's modulus (E) and tensile strength (Rm) values. Used nanofillers caused decreasing of friction and mechanical properties of PVDF nanocomposite material films.

9.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806736

RESUMO

The main aim of this study was to describe the treatment of carbon sheet with a high-energy excimer laser. The excimer modification changed the surface chemistry and morphology of carbon. The appearance of specific carbon forms and modifications have been detected due to exposure to laser beam fluencies up to 8 J cm-2. High fluence optics was used for dramatic changes in the carbon layer with the possibility of Q-carbon formation; a specific amorphous carbon phase was detected with Raman spectroscopy. The changes in morphology were determined with atomic force microscopy and confirmed with scanning electron microscopy, where the partial formation of the Q-carbon phase was detected. Energy dispersive spectroscopy (EDS) was applied for a detailed study of surface chemistry. The particular shift of functional groups induced on laser-treated areas was determined by X-ray photoelectron spectroscopy. For the first time, high-dose laser exposure successfully induced a specific amorphous carbon phase.

10.
ACS Appl Bio Mater ; 5(4): 1700-1709, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35354275

RESUMO

Nanofibers are an attractive option in drug release, especially as antibacterial materials. However, there is no universal antibacterial material and little attention has been devoted to bacteria-nanofiber attachment. Poly(N-isopropylacrylamide-co-acrylamide) is particularly interesting due to its dual thermo- and pH-responsive nature. Here, we prepared stimuli-responsive antibacterial nanofibers by the blend electrospinning of polycaprolactone (PCL), various concentrations of PNIPAm-co-AAm and ciprofloxacin (CIP). The lower critical solution temperature (LCST) of PNIPAm-co-AAm was determined by refractometry in distilled water and buffer solutions at pH 4 and 7.4. Based on the results obtained, we performed release tests, which indicated that the amount of released CIP and its release kinetics were dependent on nanofiber composition. Moreover, the nanofibers showed enhanced release at temperatures below LCST and, in turn, this led to enhanced antibacterial activity, as demonstrated by disk diffusion tests on Staphylococcus epidermidis and Escherichia coli. In addition, both bacterial strains demonstrated much lower attachment to CIP-loaded PCL/PNIPAm-co-AAm compared with CIP-loaded PCL nanofibers. Furthermore, cytocompatibility tests, performed using primary human dermal fibroblasts, produced similar good cell spreading regardless of PNIPAm-co-AAm concentration. Collectively, our results show that the proposed nanofibers have considerable potential as materials, which promote wound healing and significantly decrease the probability of bacterial infection.


Assuntos
Nanofibras , Acrilamida , Resinas Acrílicas , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli , Humanos , Concentração de Íons de Hidrogênio , Nanofibras/química , Poliésteres
11.
Polymers (Basel) ; 13(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771393

RESUMO

The usage of three-dimensional (3D) printed materials in many bioapplications has been one of the fastest-growing sectors in the nanobiomaterial industry in the last couple of years. In this work, we present a chemical approach for grafting silver nanoparticles (AgNPs) into a resin matrix, which is convenient for 3D printing. In this way, the samples can be prepared and are able to release silver ions (Ag+) with excellent antibacterial effect against bacterial strains of E. coli and S. epidermidis. By the proposed process, the AgNPs are perfectly mixed and involved in the polymerization process and their distribution in the matrix is homogenous. It was also demonstrated that this approach does not affect the printing resolution and the resin is therefore suitable for the construction of microstructures enabling controlled silver ion release and antifouling properties. At the same time the physical properties of the material, such as viscosity and elasticity modulus are preserved. The described approach can be used for the fabrication of facile, low-cost 3D printed resin with antifouling-antibacterial properties with the possibility to control the release of Ag+ through microstructuring.

12.
ACS Omega ; 6(32): 20895-20901, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423197

RESUMO

Melamine sponges were coated with polypyrrole during the in situ polymerization of pyrrole. The precipitation polymerization was compared with the dispersion mode, that is, with the preparation in the presence of poly(N-vinylpyrrolidone) and nanosilica as colloidal stabilizers. The coating of sponges during the dispersion polymerization leads to the elimination of the undesired polypyrrole precipitate, improved conductivity, and increased specific surface area. The sponges were tested with respect to their conductivity and as pressure-sensitive conducting materials with antibacterial performance.

13.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34443747

RESUMO

Due to its nanostructure, bacterial nanocellulose (BC) has several advantages over plant cellulose, but it exhibits weak cell adhesion. To overcome this drawback, we studied the drying method of BC and subsequent argon plasma modification (PM). BC hydrogels were prepared using the Komagataeibacter sucrofermentans (ATCC 700178) bacteria strain. The hydrogels were transformed into solid samples via air-drying (BC-AD) or lyophilization (BC-L). The sample surfaces were then modified by argon plasma. SEM revealed that compared to BC-AD, the BC-L samples maintained their nanostructure and had higher porosity. After PM, the contact angle decreased while the porosity increased. XPS showed that the O/C ratio was higher after PM. The cell culture experiments revealed that the initial adhesion of human keratinocytes (HaCaT) was supported better on BC-L, while the subsequent growth of these cells and final cell population density were higher on BC-AD. The PM improved the final colonization of both BC-L and BC-AD with HaCaT, leading to formation of continuous cell layers. Our work indicates that the surface modification of BC renders this material highly promising for skin tissue engineering and wound healing.

14.
Pharmaceutics ; 13(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199533

RESUMO

In this study, we have aimed at the preparation and characterization of poly-l-lactic acid (PLLA) composites with antibacterial properties. Thin bilayers of titanium and gold of various thickness ratios were deposited on PLLA by a cathode sputtering method; selected samples were subsequently thermally treated. The surface morphology of the prepared composites was studied by atomic force, scanning electron, and laser confocal microscopy. The chemical properties of the composites were determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy in combination with contact angle and zeta potential analyses. The antibacterial properties of selected samples were examined against a Gram-negative bacterial strain of E. coli. We have found that a certain combination of Au and Ti nanolayers in combination with heat treatment leads to the formation of a unique wrinkled pattern. Moreover, we have developed a simple technique by which a large-scale sample modification can be easily produced. The dimensions of wrinkles can be tailored by the sequence and thickness of the deposited metals. A selected combination of gold, titanium, and heat treatment led to the formation of a nanowrinkled pattern with excellent antibacterial properties.

15.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450953

RESUMO

This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different time exposure, silver deposition for different time periods, or their combination. As an alternative approach, the foils were coated with poly-L-lactic acid (PLLA) and silver. The following methods were used to study the surface properties of the polymers: goniometry, atomic force microscopy, and X-ray photoelectron microscopy. By combining the aforementioned methods for material surface modification, substrates with antibacterial properties eliminating the growth of Gram-positive and Gram-negative bacteria were prepared. Studies of antimicrobial activity showed that PTFE plasma-modified samples coated with PLLA and deposited with a thin layer of Ag had a strong antimicrobial effect, which was also observed for the PFA material against the bacterial strain of S. aureus. Significant antibacterial effect against S. aureus, Proteus sp. and E. coli has been demonstrated on PTFE nanotextile plasma-treated for 240 s, coated with PLLA, and subsequently sputtered with thin Ag layer.

16.
ACS Appl Mater Interfaces ; 12(42): 47774-47783, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985181

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides have become promising candidates for surface-enhanced Raman spectroscopy (SERS), but currently very few examples of detection of relevant molecules are available. Herein, we show the detection of the lipophilic disease marker ß-sitosterol on few-layered MoTe2 films. The chemical vapor deposition (CVD)-grown films are capable of nanomolar detection, exceeding the performance of alternative noble-metal surfaces. We confirm that the enhancement occurs through the chemical enhancement (CE) mechanism via formation of a surface-analyte complex, which leads to an enhancement factor of ≈104, as confirmed by Fourier transform infrared (FTIR), UV-vis, and cyclic voltammetry (CV) analyses and density functional theory (DFT) calculations. Low values of signal deviation over a seven-layered MoTe2 film confirms the homogeneity and reproducibility of the results in comparison to noble-metal substrate analogues. Furthermore, ß-sitosterol detection within cell culture media, a minimal loss of signal over 50 days, and the opportunity for sensor regeneration suggest that MoTe2 can become a promising new SERS platform for biosensing.


Assuntos
Molibdênio/química , Sitosteroides/análise , Telúrio/química , Teoria da Densidade Funcional , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
17.
Mater Sci Eng C Mater Biol Appl ; 115: 111087, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600693

RESUMO

We have developed a novel simple method for effective preparing gold nanoparticles (AuNPs) intended for utilization in biomedicine. The method is based on gold sputtering into liquid poly(ethylene glycol) (PEG). The PEG was used as a basic biocompatible stabilizer of the AuNP colloid. In addition, two naturally occurring polysaccharides - Chitosan (Ch) and Methylcellulose (MC) - were separately diluted into the PEG base with the aims to enhance the yield of the sputtering without changing the sputtering parameters, and to further improve the stability and the biocompatibility of the colloid. The colloids were sterilized by steam, and their stability was measured before and after the sterilization process by dynamic light scattering and UV-Vis spectrophotometry. The results indicated a higher sputtering yield in the colloids containing the polysaccharides. The colloids were also characterized by atomic absorption spectroscopy (AAS) to reveal the composition of the prepared nanoparticles by transmission electron microscopy (TEM) to visualize the nanoparticles and to evaluate their size and clustering, and by rheometry to estimate the viscosity of the colloids. The zeta-potential of the AuNPs was also determined as an important parameter indicating the stability and the biocompatibility of the colloid. In addition, in vitro tests of antimicrobial activity and cytotoxicity were carried out to estimate the biological activity and the biocompatibility of the colloids. Antimicrobial tests were performed by a drip test on two bacterial strains - Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. AuNP with chitosan proved to possess the highest antibacterial activity, especially towards the Gram-positive S. epidermidis. In vitro tests on eukaryotic cells, i.e. human osteoblastic cell line SAOS-2 and primary normal human dermal fibroblasts (NHDF), were performed after a 7-day cultivation to determine the effect and the toxic dose of the colloids on human cells. The studied colloid concentrations were in the range from 0.6 µg/ml to 6 µg/ml. Toxicity of the colloids started to reappear at a concentration of 4.5 µg/ml, especially with chitosan in the colloid, where the colloid with a concentration of 6 µg/ml proved to be the most toxic, especially towards the SAOS-2 cell line. However, the PEG and PEG-MC containing colloids proved to be relatively non-toxic, even at the highest concentration, but with a slowly decreasing tendency of the cell metabolic activity.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Ouro/farmacologia , Polissacarídeos/química , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Linhagem Celular , Quitosana/química , Coloides/química , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Ouro/química , Humanos , Nanopartículas Metálicas/química , Metilcelulose/química , Tamanho da Partícula , Esterilização
18.
ACS Appl Mater Interfaces ; 12(25): 28110-28119, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476406

RESUMO

The efficient utilization of solar energy is the actual task of the present and near future. Thus, the preparation of appropriate materials that are able to harvest and utilize the broad wavelength range of solar light (especially commonly ignored near-infrared light region-NIR) is the high-priority challenging mission. Our study provides a rationally designed two-dimensional (2D) flexible heterostructures with photocatalytic activity for the production of "clean" hydrogen under NIR illumination, with the hydrogen production rate exceeding most 2D materials and the ability to use the seawater as a starting material. The proposed design utilizes the hybrid bimetallic (Au/Pt) periodic structure, which is further covalently grafted with a metal-organic framework MIL-101(Cr). The periodic gold structure is able to efficiently support the plasmon-polariton wave and to excite the hot electrons, which is further injected in the Pt and MIL-101(Cr) layers. The Pt and MIL-101(Cr) structures provide catalytic sites, which are saturated with hot electrons and efficiently initiate water splitting and hydrogen production. The MIL-101(Cr) layer also serves for repelling generated hydrogen bubbles. The mechanistic studies reveal the catalytic role of every element of the 2D flexible heterostructures. The maximum hydrogen output was achieved under plasmon resonance excitation in the NIR range, and it could be actively controlled by the applied LED wavelength.

19.
Materials (Basel) ; 13(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861259

RESUMO

The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.

20.
ACS Sens ; 4(12): 3133-3140, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31793768

RESUMO

Remote detection of hydrogen, without the utilization of electronic component or elevated temperature, is one of the hot topics in the hydrogen technology and safety. In this work, the design and realization of the optical fiber-based hydrogen sensor with unique characteristics are proposed. The proposed sensor is based on the gold-coated multimode fiber, providing the plasmon properties, decorated by the IRMOF-20 layer with high selectivity and affinity toward hydrogen. The IRMOF-20 layer was grown by a surface-assisted technique, and its formation and properties were studied using X-ray photoelectron spectroscopy, Raman, X-ray diffraction, and Brunauer-Emmett-Teller techniques. Simultaneous ellipsometry results indicate the apparent changes of the refractive index of the IRMOF-20 layer due to hydrogen sorption. As results, the presence of hydrogen led to the pronounced changes of plasmon band wavelength position as well as its intensity increase. The proposed hydrogen sensors were favorably distinguished by a high response/recovery rate, excellent selectivity toward the hydrogen, very low temperature dependency, functionality at room or lower temperature, insensitivity toward the humidity, and the presence of CO2, CO, or NO2. Additionally, the proposed hydrogen sensor showed good reversibility, reproducibility, and long-term stability.


Assuntos
Ouro/química , Hidrogênio/análise , Estruturas Metalorgânicas/química , Fibras Ópticas , Refratometria/métodos , Refratometria/instrumentação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...