Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 12(1): 16, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812058

RESUMO

BACKGROUND: The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS: Using two cancer and one non-cancer breast cell line, we evaluate the effect of ß-hydroxybutyrate (ßHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of ßHb on the gene expression profile. RESULTS: Significant effects were observed following treatment by ßHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following ßHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS: Based on our results, we conclude that differential response of cancer cell lines to ßHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.

2.
Pharmaceutics ; 16(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258110

RESUMO

Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.

3.
Front Pharmacol ; 14: 1234332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663250

RESUMO

Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.

4.
Crit Rev Oncol Hematol ; 186: 103997, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062337

RESUMO

The Human Epidermal Growth Factor Receptor (HER) proteins family, which includes HER2, are membrane-bound receptors that activate many intracellular pathways associated with growth and development. When there are mutations in HER2, or when it becomes overexpressed, it can cause oncogenesis and offer differential prognosis and treatment across almost all cancer types. Both mutations in HER2 and its overexpression have distinct mechanisms by which they can cause these effects in cancers. This review outlines how HER2's normal pathway is altered in both overexpression and mutation and compiles all the well-known mechanisms by which HER2 can cause oncogenesis. Finally, this review briefly outlines how HER2 mutants and HER2 overexpression is detected, and how their detection can lead to different prognosis and treatment in cancers.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias/genética , Neoplasias/terapia , Prognóstico , Mutação , Carcinogênese/genética
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806255

RESUMO

Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.


Assuntos
Interferon-alfa , Interferons , Animais , Antivirais/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferons/genética , Camundongos , Poli I-C/farmacologia
6.
Transl Cancer Res ; 11(1): 134-147, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35261891

RESUMO

Background: Breast cancer is the most common cause of cancer related deaths in women. Treatment of breast cancer has many limitations including a lack of accurate biomarkers to predict success of chemotherapy and intrinsic resistance of a significant group of patients to the gold standard of therapy. Therefore, new tools are needed to provide doctors with guidance in choosing the most effective treatment plan for a particular patient and thus to increase the survival rate for breast cancer patients. Methods: Here, we present a successful method to grow in vitro spheroids from primary breast cancer tissue. Samples were received in accordance with relevant ethical guidelines and regulations. After tissue dissociation, in vitro spheroids were generated in a scaffold-free 96-well plate format. Spheroid composition was investigated by immunohistochemistry (IHC) of epithelial [pan cytokeratin (panCK)], stromal (vimentin) and breast cancer-specific markers (ER, PR, HER2, GATA). Growth and cell viability of the spheroids were assessed upon treatment with multiple anti-cancer compounds. Student's t-test and two-way ANOVA test were used to determine statistical significance. Results: We were able to successfully grow spheroids from 27 out of 31 samples from surgical resections of breast cancer tissue from previously untreated patients. Recapitulation of the histopathology of the tissue of origin was confirmed. Furthermore, a drug panel of standard first-line chemotherapy drugs used to treat breast cancer was applied to assess the viability of the patient-derived spheroids and revealed variation between samples in the response of the spheroids to different drug treatments. Conclusions: We investigated the feasibility and the utility of an in vitro, patient-derived spheroid model for breast cancer therapy, and we conclude that spheroids serve as a highly effective platform to explore cancer therapeutics and personalized treatment efficacy. These results have significant implications for the application of this model in clinical personalized medicine.

7.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502483

RESUMO

We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvß3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvß3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
NPJ Biofilms Microbiomes ; 7(1): 28, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741982

RESUMO

The link between the gut microbiota and social behavior has been demonstrated, however the translational impact of a certain microbiota composition on stable behavioral patterns is yet to be elucidated. Here we employed an established social behavior mouse model of dominance (Dom) or submissiveness (Sub). A comprehensive 16S rRNA gene sequence analysis of Dom and Sub mice revealed a significantly different gut microbiota composition that clearly distinguishes between the two behavioral modes. Sub mice gut microbiota is significantly less diverse than that of Dom mice, and their taxa composition uniquely comprised the genera Mycoplasma and Anaeroplasma of the Tenericutes phylum, in addition to the Rikenellaceae and Clostridiaceae families. Conversely, the gut microbiota of Dom mice includes the genus Prevotella of the Bacteriodetes phylum, significantly less abundant in Sub mice. In addition, Sub mice show lower body weight from the age of 2 weeks and throughout their life span, accompanied with lower epididymis white adipose tissue (eWAT) mass and smaller adipocytes together with substantially elevated expression of inflammation and metabolic-related eWAT adipokines. Finally, fecal microbiota transplantation into germ-free mice show that Sub-transplanted mice acquired Sub microbiota and adopted their behavioral and physiological features, including depressive-like and anti-social behaviors alongside reduced eWAT mass, smaller adipocytes, and a Sub-like eWAT adipokine profile. Our findings demonstrate the critical role of the gut microbiome in determining dominance vs. submissiveness and suggest an association between gut microbiota, the eWAT metabolic and inflammatory profile, and the social behavior mode.


Assuntos
Tecido Adiposo/metabolismo , Bactérias/classificação , Depressão/microbiologia , Análise de Sequência de RNA/métodos , Comportamento Social , Tecido Adiposo/imunologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Comportamento Animal/fisiologia , Peso Corporal , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal , Vida Livre de Germes , Masculino , Camundongos , Filogenia , RNA Ribossômico 16S/genética
9.
Aging Cell ; 19(10): e13219, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856419

RESUMO

Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.


Assuntos
Tecido Adiposo Branco/metabolismo , Receptores de Complemento/metabolismo , Envelhecimento/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Pharmacol Rep ; 72(6): 1509-1516, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32700247

RESUMO

Cepharanthine (CEP) is a naturally occurring alkaloid derived from Stephania cepharantha Hayata and demonstrated to have unique anti-inflammatory, antioxidative, immunomodulating, antiparasitic, and antiviral properties. Its therapeutic potential as an antiviral agent has never been more important than in combating COVID-19 caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) virus. Cepharanthine suppresses nuclear factor-kappa B (NF-κB) activation, lipid peroxidation, nitric oxide (NO) production, cytokine production, and expression of cyclooxygenase; all of which are crucial to viral replication and inflammatory response. Against SARS-CoV-2 and homologous viruses, CEP predominantly inhibits viral entry and replication at low doses; and was recently identified as the most potent coronavirus inhibitor among 2406 clinically approved drug repurposing candidates in a preclinical model. This review critically analyzes and consolidates available evidence establishing CEP's potential therapeutic importance as a drug of choice in managing COVID-19 cases.


Assuntos
Antivirais/uso terapêutico , Benzilisoquinolinas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , COVID-19/virologia , Reposicionamento de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/virologia , Japão , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Replicação Viral/efeitos dos fármacos
11.
Anticancer Res ; 40(7): 3831-3837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620622

RESUMO

BACKGROUND/AIM: The ketogenic diet has recently gained interest as potential adjuvant therapy for cancer. Many researchers have endeavored to support this claim in vitro. One common model utilizes treatment with exogenous acetoacetate in lithium salt form (LiAcAc). We aimed to determine whether the effects of treatment with LiAcAc on cell viability, as reported in the literature, accurately reflect the influence of acetoacetate. MATERIALS AND METHODS: Breast cancer and normal cell lines were treated with acetoacetate, in lithium and sodium salt forms, and cell viability was assessed. RESULTS: The effect of LiAcAc on cells was mediated by Li ions. Our results showed that the cytotoxic effects of LiAcAc treatment were significantly similar to those caused by LiCl, and also treatment with NaAcAc did not cause any significant cytotoxic effect. CONCLUSION: Treatment of cells with LiAcAc is not a convincing in vitro model for studying ketogenic diet. These findings are highly important for interpreting previously published results, and for designing new experiments to study the ketogenic diet in vitro.


Assuntos
Acetoacetatos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos de Lítio/farmacologia , Lítio/farmacologia , Acetoacetatos/química , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cátions Monovalentes/química , Cátions Monovalentes/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Lítio/química , Cloreto de Lítio/química , Cloreto de Lítio/farmacologia , Compostos de Lítio/química , Células MCF-7
12.
Behav Brain Res ; 379: 112361, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734264

RESUMO

The effects of cannabis reported by users range from experiences of euphoria and anxiolytic effects to paranoia, anxiety, and increased risk of depression. Attempts to reconcile the apparent contradictions in user response have not been conclusive. Here, we utilized selectively-bred stress-resilient socially dominant (Dom) and stress-sensitive socially submissive (Sub) mice to elucidate this contradiction. Following short-term, repeated treatment with delta-9-tetrahydrocannabinol (THC) at two different doses (1.5 mg/kg and 15 mg/kg), Sub mice presented significant place-aversion in a Conditioned Place Preference paradigm at a high dose, whereas Dom mice displayed no place preference or aversion. Forced Swim test conducted after 6-week of washout period, revealed differential impact of the two THC doses depending upon behavioral pattern. Specifically, the low dose alleviated depressive-like behavior in Sub mice, while the high dose produced the opposite effect in Dom mice. Interestingly, corticosterone concentration in serum was elevated at the high dose regardless of the mice-population tested. We conclude here that differences in dominance behavior and stress vulnerability are involved in the regulation of cannabis response among users and should be considered when prescribing THC-containing medications to patients.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/sangue , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Dominação-Subordinação , Dronabinol/farmacologia , Personalidade , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Masculino , Camundongos , Personalidade/fisiologia
13.
Oncotarget ; 9(59): 31367-31379, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30140376

RESUMO

Multiple myeloma (MM) remains an incurable hematological malignancy. Combination regimens of conventional and novel drugs have improved patient's survival. However, most patients inevitably relapse and become refractory to the current therapeutic armamentarium. We investigated the efficacy of combining the microtubule-targeting agent STK405759 with dexamethasone or bortezomib in vitro and in vivo. STK405759 combined with dexamethasone or bortezomib had synergistic cytotoxic activity in RPMIS, CAG and MM1.S human MM cell lines through activation of caspase 2, 3, 8, 9 and PARP. These treatments remained cytotoxic in the presence of bone marrow stroma cells. In other MM cells, including cells resistant to vincristine, melphalan, mitoxantrone or dexamethasone, these combinations decreased significantly survival as compared to single agents. In in vivo studies, STK405759 disrupted existing blood vessels in xenograft tumors, acting not only as a cytotoxic agent but also as an anti-angiogenic drug. Mice treated with STK405759 in combination with dexamethasone or bortezomib resulted in greater tumor growth inhibition, increased overall response and prolonged survival as compared to as compared to BTZ or DEXA alone. Their anticancer activity was mediated by activation of apoptosis and reduction of tumor microvessel density. These preclinical studies provide the rationale for future clinical trials of STK405759, dexamethasone and bortezomib combinations to improve the outcome of multiple myeloma patients.

14.
Elife ; 72018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29400649

RESUMO

Cellular responses to the loss of genomic stability are well-established, while how mammalian cells respond to chromatin destabilization is largely unknown. We previously found that DNA demethylation on p53-deficient background leads to transcription of repetitive heterochromatin elements, followed by an interferon response, a phenomenon we named TRAIN (Transcription of Repeats Activates INterferon). Here, we report that curaxin, an anticancer small molecule, destabilizing nucleosomes via disruption of histone/DNA interactions, also induces TRAIN. Furthermore, curaxin inhibits oncogene-induced transformation and tumor growth in mice in an interferon-dependent manner, suggesting that anticancer activity of curaxin, previously attributed to p53-activation and NF-kappaB-inhibition, may also involve induction of interferon response to epigenetic derepression of the cellular 'repeatome'. Moreover, we observed that another type of drugs decondensing chromatin, HDAC inhibitor, also induces TRAIN. Thus, we proposed that TRAIN may be one of the mechanisms ensuring epigenetic integrity of mammalian cells via elimination of cells with desilenced chromatin.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Instabilidade Genômica , Interferons/metabolismo , Transcrição Gênica , Animais , Antineoplásicos/metabolismo , Células Cultivadas , Inibidores de Histona Desacetilases/metabolismo , Humanos , Camundongos
15.
Cancer Res ; 78(6): 1431-1443, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29339544

RESUMO

Precisely how DNA-targeting chemotherapeutic drugs trigger cancer cell death remains unclear, as it is difficult to separate direct DNA damage from other effects in cells. Recent work on curaxins, a class of small-molecule drugs with broad anticancer activity, shows that they interfere with histone-DNA interactions and destabilize nucleosomes without causing detectable DNA damage. Chromatin damage caused by curaxins is sensed by the histone chaperone FACT, which binds unfolded nucleosomes becoming trapped in chromatin. In this study, we investigated whether classical DNA-targeting chemotherapeutic drugs also similarly disturbed chromatin to cause chromatin trapping of FACT (c-trapping). Drugs that directly bound DNA induced both chromatin damage and c-trapping. However, chromatin damage occurred irrespective of direct DNA damage and was dependent on how a drug bound DNA, specifically, in the way it bound chromatinized DNA in cells. FACT was sensitive to a plethora of nucleosome perturbations induced by DNA-binding small molecules, including displacement of the linker histone, eviction of core histones, and accumulation of negative supercoiling. Strikingly, we found that the cytotoxicity of DNA-binding small molecules correlated with their ability to cause chromatin damage, not DNA damage. Our results suggest implications for the development of chromatin-damaging agents as selective anticancer drugs.Significance: These provocative results suggest that the anticancer efficacy of traditional DNA-targeting chemotherapeutic drugs may be based in large part on chromatin damage rather than direct DNA damage. Cancer Res; 78(6); 1431-43. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Cromatina/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Aclarubicina/metabolismo , Aclarubicina/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Carbazóis/metabolismo , Carbazóis/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Humanos , Mutação , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Fatores de Elongação da Transcrição/genética
16.
Anal Chem ; 89(6): 3310-3317, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28194960

RESUMO

Proteins and small molecules from ancient objects and cultural heritage can provide key information and contribute to study the context of objects and artists. However, all present-day protocols and strategies for the analysis of ancient samples are often invasive and require microsampling. Here, we present a new method for the noninvasive analysis of proteins and small molecules: the technique uses a special ethyl-vinyl acetate film functionalized with strong cation/anion exchange and C8 resins, for interacting with both proteins and small molecules present on the surface of the objects, followed by LC-MS/MS analysis. The new method was fully validated for the determination of both proteins and small molecules on several types of supports, showing excellent analytical performances such as, for example, R2 of the calibration curve of 0.98 and 0.99 for proteins and small molecules, low but very repeatable recoveries, particularly adequate for investigations on precious ancient samples that must not be altered by the analytical procedure. ESEM images and LED multispectral imaging confirmed that no damages or alterations occurred onto the support surfaces and no residues were left from the extractive film. Finally, the new method was applied for the characterization of the binders of a historical fresco of the XVI century from the Flemish painter Paul Brill and of a recently discovered fresco from Isidoro Bianchi (XVII century). Moreover the method was employed for the identification of the colorant used by Pietro Gallo (XIV century) on a wood panel. The method here reported can be easily applied to any other research on ancient precious objects and cultural heritage, since it does not require microsampling and the proteins/small molecules extraction can be performed directly in situ, leaving the object unchanged and intact.


Assuntos
Corantes/análise , Excipientes/análise , Proteínas/análise , Bibliotecas de Moléculas Pequenas/análise , Cromatografia Líquida , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície , Compostos de Vinila/química
17.
Nucleic Acids Res ; 45(4): 1925-1945, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28082391

RESUMO

Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/genética , Células Eucarióticas/metabolismo , Conformação de Ácido Nucleico , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Humanos , Repetições de Microssatélites , Modelos Biológicos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Subunidades Proteicas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
World J Biol Psychiatry ; 18(8): 604-614, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27409526

RESUMO

OBJECTIVES: To examine the effect of seasonality and rs6265 genotype on depression outcome and brain-derived neurotrophic factor (BDNF) level with dermatitis patients from onset through remission. METHODS: Atopic dermatitis (AD, 56) and psoriasis (PS, 33) patients and healthy controls (HC, 49) were recruited over the 2014 calendar year. Patients were subdivided by immunoglobulin E (IgE) sensitivity (AD only), season and rs6265 genotype. Assessments were performed at onset and week 10 (Hamilton Depression Rating Scale [HAM-D], SCORAD/PASI, IgE, BDNF). Patients received standard corticosteroid and antihistamine interventions. RESULTS: All patients responded to corticosteroid treatment. Seasonally differential outcomes were observed in all groups. HAM-D was elevated at onset and improved over 10 weeks: AD cohort 1 (autumn/winter, AD-1) patients improved and AD cohort 2 (spring/summer, AD-2) patients remained elevated. BDNF levels were elevated in AD and seasonal differential: AD-2 declined at 10 weeks, whereas AD-1 remained high (intrinsic AD) or elevated further (extrinsic AD). PS cohort 2 declined to below control at 10 weeks. AD Val/Val had persistently elevated HAM-D and AD Val/Met were either normal (AD-1) or persistently elevated (AD-2). CONCLUSIONS: Findings presented here suggest a strong influence of seasonality on depression outcome and BDNF expression in AD and PS and likely reflect separate patient populations which differentially respond to environment-based stressors.


Assuntos
Corticosteroides/farmacologia , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/genética , Depressão/fisiopatologia , Dermatite Atópica , Imunoglobulina E/imunologia , Psoríase , Estações do Ano , Adulto , Idoso , Dermatite Atópica/sangue , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/psicologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Psoríase/sangue , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/psicologia
19.
Oncotarget ; 7(39): 63549-63560, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27556860

RESUMO

ALOS4, a unique synthetic cyclic peptide without resemblance to known integrin ligand sequences, was discovered through repeated biopanning with pIII phage expressing a disulfide-constrained nonapeptide library. Binding assays using a FITC-labeled analogue demonstrated selective binding to immobilized αvß3 and a lack of significant binding to other common proteins, such as bovine serum albumin and collagen. In B16F10 cell cultures, ALOS4 treatment at 72 h inhibited cell migration (30%) and adhesion (up to 67%). Immunofluorescent imaging an ALOS4-FITC analogue with B16F10 cells demonstrated rapid cell surface binding, and uptake and localization in the cytoplasm. Daily injections of ALOS4 (0.1, 0.3 or 0.5 mg/kg i.p.) to mice inoculated with B16F10 mouse melanoma cells in two different cancer models, metastatic and subcutaneous tumor, resulted in reduction of lung tumor count (metastatic) and tumor mass (subcutaneous) and increased survival of animals monitored to 45 and 60 days, respectively. Examination of cellular activity indicated that ALOS4 produces inhibition of cell migration and adhesion in a concentration-dependent manner. Collectively, these results suggest that ALOS4 is a structurally-unique selective αvß3 integrin ligand with potential anti-metastatic activity.


Assuntos
Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/prevenção & controle , Peptídeos Cíclicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Células Tumorais Cultivadas
20.
PLoS One ; 10(5): e0127643, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010085

RESUMO

Though the role of brain derived neurotrophic factor (BDNF) as a marker for major depressive disorder (MDD) and antidepressant efficacy has been widely studied, the role of BDNF in distinct groups of patients remains unclear. We evaluated the diagnostic value of BDNF as a marker of disease severity measured by HAM-D scores and antidepressants efficacy among MDD patients. Fifty-one patients who met DSM-IV criteria for MDD and were prescribed antidepressants and 38 controls participated in this study. BDNF in serum was measured at baseline, 1st, 2nd and 8th treatment weeks. Depression severity was evaluated using the Hamilton Rating Scale for Depression (HAM-D). BDNF polymorphism rs6265 (val66met) was genotyped. We found a positive correlation between blood BDNF levels and severity of depression only among untreated women with severe MDD (HAM-D>24). Serum BDNF levels were lower in untreated MDD patients compared to control group. Antidepressants increased serum BDNF levels and reduced between-group differences after two weeks of treatment. No correlations were observed between BDNF polymorphism, depression severity, duration of illness, age and BDNF serum levels. Further supporting the role of BDNF in the pathology and treatment of MDD, we suggest that it should not be used as a universal biomarker for diagnosis of MDD in the general population. However, it has diagnostic value for the assessment of disease progression and treatment efficacy in individual patients.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Transtorno Depressivo Maior/sangue , Caracteres Sexuais , Adulto , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , Demografia , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...