Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15769-15778, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829376

RESUMO

A polarized light source covering a wide wavelength range is required in applications across diverse fields, including optical communication, photonics, spectroscopy, and imaging. For practical applications, high degrees of polarization and thermal performance are needed to ensure the stability of the radiation intensity and low energy consumption. Here, we achieved efficient emission of highly polarized and broadband thermal radiation from a suspended aligned carbon nanotube film. The anisotropic nature of the film, combined with the suspension, led to a high degree of linear polarization (∼0.9) and great thermal performance. Furthermore, we performed time-resolved measurements of thermal emission from the film, revealing a fast time response of approximately a few microseconds. We also obtained visible light emission from the device and analyzed the film's mechanical breakdown behavior to improve the emission intensity. Finally, we demonstrated that suspended devices with a constriction geometry can enhance the heating performance. These results show that carbon nanotube film-based devices, as electrically driven thermal emitters of polarized radiation, can play an important role for future development in optoelectronics and spectroscopy.

2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766215

RESUMO

Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 µM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.

3.
Nano Lett ; 23(21): 9817-9824, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882802

RESUMO

Spectroscopic analysis with polarized light has been widely used to investigate molecular structure and material behavior. A broadband polarized light source that can be switched on and off at a high speed is indispensable for reading faint signals, but such a source has not been developed. Here, using aligned carbon nanotube (CNT) films, we have developed broadband thermal emitters of polarized infrared radiation with switching speeds of ≲20 MHz. We found that the switching speed depends on whether the electrical current is parallel or perpendicular to the CNT alignment direction with a significantly higher speed achieved in the parallel case. Together with detailed theoretical simulations, our experimental results demonstrate that the contact thermal conductance to the substrate and the conductance to the electrodes are important factors that determine the switching speed. These emitters can lead to advanced spectroscopic analysis techniques with polarized radiation.

4.
Adv Mater ; 35(41): e2304082, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391190

RESUMO

Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type-separated (semiconducting and metallic) CNTs are synthesized and polarization-dependent third-harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength-dependent, intense THG signals, enhanced through exciton resonances, and third-order nonlinear optical susceptibilities of 2.50 × 10-19  m2  V-2 (semiconducting CNTs) and 1.23 × 10-19  m2  V-2 (metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization-dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large-size CNT film with good alignment. These findings promise applications of aligned CNT films in mid-infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long-wave detection, and high-performance anisotropic nonlinear photonic devices.

5.
Nano Lett ; 23(10): 4448-4455, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37164003

RESUMO

The one-dimensional confinement of quasiparticles in individual carbon nanotubes (CNTs) leads to extremely anisotropic electronic and optical properties. In a macroscopic ensemble of randomly oriented CNTs, this anisotropy disappears together with other properties that make them attractive for certain device applications. The question however remains if not only anisotropy but also other types of behaviors are suppressed by disorder. Here, we compare the dynamics of quasiparticles under strong electric fields in aligned and random CNT networks using a combination of terahertz emission and photocurrent experiments and out-of-equilibrium numerical simulations. We find that the degree of alignment strongly influences the excited quasiparticles' dynamics, rerouting the thermalization pathways. This is, in particular, evidenced in the high-energy, high-momentum electronic population (probed through the formation of low energy excitons via exciton impact ionization) and the transport regime evolving from diffusive to superdiffusive.

6.
Int J Urol ; 29(12): 1505-1510, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070502

RESUMO

OBJECTIVES: The study identified factors affecting anti-S immunoglobulin G production after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in kidney transplant recipients. METHODS: Serum samples were prospectively collected from kidney transplant recipients, live kidney donors, and healthy volunteers 1 month after receiving the second dose of SARS-CoV-2 vaccine, and anti-S immunoglobulin G titers were measured. The mycophenolate mofetil dose was reduced before vaccination in some immunologically low-risk recipients. RESULTS: A total of 151 kidney transplant recipients, 74 live kidney donors, and 50 healthy volunteers were included. Kidney transplant recipients had significantly lower titers of anti-S immunoglobulin G than donors and healthy volunteers (1377 ± 246, 8310 ± 932, and 9908 ± 1040 AU/ml, respectively). Only 67.3% of kidney transplant recipients, compared to 100% of donors and healthy volunteers, were positive for anti-S immunoglobulin G. Among the kidney transplant recipients, the anti-S titer was higher in younger recipients, those with higher peripheral blood lymphocyte counts and glomerular filtration rates, those without a history of antithymocyte globulin use, and those who had discontinued or received a reduced dose of mycophenolate mofetil. Younger age, higher lymphocyte count, glomerular filtration rate, and mycophenolate reduction were significantly associated with anti-S immunoglobulin G > 1000 AU/ml in nominal logistic regression analysis. There were no rejection episodes after mycophenolate modification in kidney transplant recipients. CONCLUSIONS: Anti-S immunoglobulin G production after vaccination was attenuated in kidney transplant recipients. Mycophenolate mofetil cessation or reduction is a modifiable means to enhance anti-S immunoglobulin G production in immunosuppressed kidney transplant recipients.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Transplante de Rim , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunoglobulina G , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Transplante de Rim/efeitos adversos , Ácido Micofenólico/uso terapêutico , SARS-CoV-2 , Transplantados , Vacinação
7.
Sci Adv ; 8(16): eabn0939, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452295

RESUMO

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.

8.
Sci Rep ; 12(1): 101, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996961

RESUMO

The presence of hopping carriers and grain boundaries can sometimes lead to anomalous carrier types and density overestimation in Hall-effect measurements. Previous Hall-effect studies on carbon nanotube films reported unreasonably large carrier densities without independent assessments of the carrier types and densities. Here, we have systematically investigated the validity of Hall-effect results for a series of metallic, semiconducting, and metal-semiconductor-mixed single-wall carbon nanotube films. With carrier densities controlled through applied gate voltages, we were able to observe the Hall effect both in the n- and p-type regions, detecting opposite signs in the Hall coefficient. By comparing the obtained carrier types and densities against values derived from simultaneous field-effect-transistor measurements, we found that, while the Hall carrier types were always correct, the Hall carrier densities were overestimated by up to four orders of magnitude. This significant overestimation indicates that thin films of one-dimensional SWCNTs are quite different from conventional hopping transport systems.

9.
Nat Commun ; 12(1): 4931, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389723

RESUMO

Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m-1 K-2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.

10.
Adv Mater ; 33(8): e2006395, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33314478

RESUMO

Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials.

11.
Nano Lett ; 20(5): 3098-3105, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227963

RESUMO

Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (CNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100 meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting CNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast (<1 ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all of our experimental data semiquantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in CNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.

12.
Nano Lett ; 20(4): 2332-2338, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32092275

RESUMO

Ever since the discovery of carbon nanotubes (CNTs), it has long been a challenging goal to create macroscopically ordered assemblies, or crystals, of CNTs that preserve the one-dimensional quantum properties of individual CNTs on a macroscopic scale. Recently, a simple and well-controlled method was reported for producing wafer-scale crystalline films of highly aligned and densely packed CNTs through spontaneous global alignment that occurs during vacuum filtration (Nat. Nanotechnol. 2016, 11, 633). However, a full understanding of the mechanism of such global alignment has not been achieved. Here, we report results of a series of systematic experiments that demonstrate that the CNT alignment direction can be controlled by the surface morphology of the filter membrane used in the vacuum filtration process. More specifically, we found that the direction of parallel grooves pre-existing on the surface of the filter membrane dictates the direction of the resulting CNT alignment. Furthermore, we intentionally imprinted periodically spaced parallel grooves on a filter membrane using a diffraction grating, which successfully defined the direction of the global alignment of CNTs in a precise and reproducible manner. These results are promising not only for developing novel devices based on macroscopically aligned CNTs but also for understanding the microscopic physical mechanism of the alignment process.

13.
Nano Lett ; 19(10): 7370-7376, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498635

RESUMO

Semiconductors are generally considered far superior to metals as thermoelectric materials because of their much larger Seebeck coefficients (S). However, a maximum value of S in a semiconductor is normally accompanied by a minuscule electrical conductivity (σ), and hence, the thermoelectric power factor (P = S2σ) remains small. An attempt to increase σ by increasing the Fermi energy (EF), on the other hand, decreases S. This trade-off between S and σ is a well-known dilemma in developing high-performance thermoelectric devices based on semiconductors. Here, we show that the use of metallic carbon nanotubes (CNTs) with tunable EF solves this long-standing problem, demonstrating a higher thermoelectric performance than semiconducting CNTs. We studied the EF dependence of S, σ, and P in a series of CNT films with systematically varied metallic CNT contents. In purely metallic CNT films, both S and σ monotonically increased with EF, continuously boosting P while increasing EF. Particularly, in an aligned metallic CNT film, the maximum of P was ∼5 times larger than that in the highest-purity (>99%) single-chirality semiconducting CNT film. We attribute these superior thermoelectric properties of metallic CNTs to the simultaneously enhanced S and σ of one-dimensional conduction electrons near the first van Hove singularity.

14.
J Vet Med Sci ; 79(3): 517-523, 2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28070089

RESUMO

Bovine respiratory disease complex (BRDC) is frequently found in cattle worldwide. The etiology of BRDC is complicated by infections with multiple pathogens, making identification of the causal pathogen difficult. Here, we developed a detection system by applying TaqMan real-time PCR (Dembo respiratory-PCR) to screen a broad range of microbes associated with BRDC in a single run. We selected 16 bovine respiratory pathogens (bovine viral diarrhea virus, bovine coronavirus, bovine parainfluenza virus 3, bovine respiratory syncytial virus, influenza D virus, bovine rhinitis A virus, bovine rhinitis B virus, bovine herpesvirus 1, bovine adenovirus 3, bovine adenovirus 7, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes, Mycoplasma bovis and Ureaplasma diversum) as detection targets and designed novel specific primer-probe sets for nine of them. The assay performance was assessed using standard curves from synthesized DNA. In addition, the sensitivity of the assay was evaluated by spiking solutions extracted from nasal swabs that were negative by Dembo respiratory-PCR for nucleic acids of pathogens or synthesized DNA. All primer-probe sets showed high sensitivity. In this study, a total of 40 nasal swab samples from cattle on six farms were tested by Dembo respiratory-PCR. Dembo respiratory-PCR can be applied as a screening system with wide detection targets.


Assuntos
Complexo Respiratório Bovino/microbiologia , Complexo Respiratório Bovino/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Asian-Australas J Anim Sci ; 30(7): 1048-1053, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28002931

RESUMO

OBJECTIVE: The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. METHODS: Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. RESULTS: The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. CONCLUSION: Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

16.
J Vet Med Sci ; 78(3): 383-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616156

RESUMO

Diarrhea in cattle is one of the most economically costly disorders, decreasing milk production and weight gain. In the present study, we established a novel simultaneous detection system using TaqMan real-time PCR designed as a system for detection of microbes from bovine diarrhea using real-time PCR (referred to as Dembo-PCR). Dembo-PCR simultaneously detects a total of 19 diarrhea-causing pathogens, including viruses, bacteria and protozoa. Specific primer-probe sets were newly designed for 7 pathogens and were synthesized on the basis of previous reports for 12 pathogens. Assays were optimized to react under the same reaction conditions. The PCR efficiency and correlation coefficient (R(2)) of standard curves for each assay were more than 80% and 0.9766, respectively. Furthermore, the sensitivity of Dembo-PCR in fecal sample analysis was measured with feces spiked with target pathogens or synthesized DNA that included specific nucleotide target regions. The resulting limits of detection (LOD) for virus-spiked samples, bacteria and DNA fragments were 0.16-1.6 TCID50 (PFU/reaction), 1.3-13 CFU/reaction and 10-100 copies/reaction, respectively. All reactions showed high sensitivity in pathogen detection. A total of 8 fecal samples, collected from 6 diarrheic cattle, 1 diarrheic calf and 1 healthy cow, were tested using Dembo-PCR to validate the assay's clinical performance. The results revealed that bovine coronavirus had infected all diarrheic adult cattle and that bovine torovirus had infected the diarrheic calf. These results suggest that Dembo-PCR may be a powerful tool for diagnosing infectious agents in cattle diarrhea.


Assuntos
Doenças dos Bovinos/microbiologia , Diarreia/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Coronavirus Bovino , Diarreia/diagnóstico , Feminino , Torovirus , Infecções por Torovirus/diagnóstico , Infecções por Torovirus/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA