Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Artif Organs ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771405

RESUMO

A simple and robust method for veno-venous extracorporeal membrane oxygenation (V-V ECMO) involves a drainage cannula into the inferior vena cava via the femoral vein (FV) and a reinfusion cannula into the right atrium (RA) via the internal jugular vein (IJV) (F-J configuration). However, with this method, the arterial oxygen (PaO2) is said to remain below 100 mmHg.Since recently, in our ICU, to prevent drainage failure, we apply a modification from the commonly practiced F-J configuration by advancing the tip of the drainage cannula inserted via the FV into the superior vena cava (SVC) and crossing the reinfusion cannula inserted via the IJV in the RA (F(SVC)-J(RA) configuration). We experienced that this modification can be associated with unexpectedly high PaO2 values, which here we investigated in detail.Veno-arteriovenous ECMO was induced in a 65-year-old male patient who suffered from repeated cardiac arrest due to acute respiratory distress syndrome. His chest X-ray images showed white-out after lung rest setting, consistent with near-absence of self-lung ventilation. Cardiac function recovered and the system was converted to F(SVC)-J(RA) configuration, after which both PaO2 and partial pressure of pulmonary arterial oxygen values remained high above 200 mmHg. Transesophageal echocardiography could not detect right-to-left shunt, and more efficient drainage of the native venous return flow compared to common F-J configuration may explain the increased PaO2.Although the F(SVC)-J(RA) configuration is a small modification of the F-J configuration, it seems to provide a revolutionary improvement in the ECMO field by combining robustness/simplicity with high PaO2 values.

2.
Am J Respir Cell Mol Biol ; 70(1): 50-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37607215

RESUMO

Progressive lung scarring because of persistent pleural organization often results in pleural fibrosis (PF). This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to loculation. In PF, pleural mesothelial cells undergo mesomesenchymal transition (MesoMT) to become profibrotic, characterized by increased expression of α-smooth muscle actin and matrix proteins, including collagen-1. In our previous study, we showed that blocking PI3K/Akt signaling inhibits MesoMT induction in human pleural mesothelial cells (HPMCs) (1). However, the downstream signaling pathways leading to MesoMT induction remain obscure. Here, we investigated the role of mTOR complexes (mTORC1/2) in MesoMT induction. Our studies show that activation of the downstream mediator mTORC1/2 complex is, likewise, a critical component of MesoMT. Specific targeting of mTORC1/2 complex using pharmacological inhibitors such as INK128 and AZD8055 significantly inhibited transforming growth factor ß (TGF-ß)-induced MesoMT markers in HPMCs. We further identified the mTORC2/Rictor complex as the principal contributor to MesoMT progression induced by TGF-ß. Knockdown of Rictor, but not Raptor, attenuated TGF-ß-induced MesoMT in these cells. In these studies, we further show that concomitant activation of the SGK1/NDRG1 signaling cascade is essential for inducing MesoMT. Targeting SGK1 and NDRG1 with siRNA and small molecular inhibitors attenuated TGF-ß-induced MesoMT in HPMCs. Additionally, preclinical studies in our Streptococcus pneumoniae-mediated mouse model of PF showed that inhibition of mTORC1/2 with INK128 significantly attenuated the progression of PF in subacute and chronic injury. In conclusion, our studies demonstrate that mTORC2/Rictor-mediated activation of SGK1/NDRG1 is critical for MesoMT induction and that targeting this pathway could inhibit or even reverse the progression of MesoMT and PF.


Assuntos
Doenças Pleurais , Pleurisia , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Fibrose
3.
Fujita Med J ; 9(3): 179-185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554933

RESUMO

Objectives: Perioperative venous thromboembolism (VTE) is a potentially fatal complication, making preoperative VTE diagnosis and secondary thromboprophylaxis important. This study was performed to investigate the impact of promotion of a preoperative VTE protocol at a perioperative management center (PMC) on detecting the preoperative VTE rate and subsequent treatment. Methods: This retrospective study involved patients aged ≥20 years who underwent elective anesthesia. The patients were divided into two groups: the pre-PMC group (January to October 2014, before the opening of the PMC) and the post-PMC group (January to December 2019, after the opening of the PMC). The rates of preoperative lower-limb compression ultrasonography (CUS), VTE detection, anticoagulation therapy, and new postoperative pulmonary embolism (PE) were compared between the two groups. Results: The pre-PMC and post-PMC groups comprised 3737 and 5388 patients, respectively. The preoperative CUS and VTE detection rates were significantly higher in the post-PMC than pre-PMC group (7.2% and 1.43% vs. 25.6% and 3.93%, respectively; P<0.001). There was no significant difference in the rate of anticoagulation therapy in patients with preoperative VTE (88.9% vs. 84.7%, P=0.43). Heparin and direct oral anticoagulants were primarily used in the pre-PMC and post-PMC groups, respectively. The efficacy and safety were comparable between the two groups. No new postoperative PE was detected in either group. Conclusions: Promotion of the preoperative VTE protocol led by the PMC increased the rates of preoperative CUS and preoperative VTE detection. This may aid in secondary thromboprophylaxis in the preoperative period and prevention of postoperative PE.

4.
J Artif Organs ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542642

RESUMO

We report a case in which excessive negative pressure may have been applied to the proximal side hole of a drainage cannula during venovenous extracorporeal membrane oxygenation (V-V ECMO), resulting in abnormal stenosis of the drainage cannula. V-V ECMO was introduced in a 71-year-old male patient who was transferred from another hospital for severe respiratory failure associated with varicella pneumonia and acute respiratory distress syndrome. Drainage was performed using a PCKC-V™ 24Fr (MERA, Japan) cannula via the right femoral vein with the tip of the cannula near the level of the diaphragm under fluoroscopy. Reinfusion was performed via the right internal jugular vein. Due to poor systemic oxygenation, the drainage cannula was withdrawn caudally and refixed to reduce the effect of recirculation. Two days later, drainage pressure dropped rapidly, and frequent ECMO flow interruption occurred due to poor drainage. An abdominal X-ray revealed abnormal stenosis of the proximal side hole site of the drainage cannula. We diagnosed that the drainage cannula was damaged, and it was replaced with another, namely a Medtronic Bio-Medicus™ 25 Fr (GETINGE, Sweden) cannula. However, the removed drainage cannula was not damaged, suggesting that the cannula was temporarily stenosed by momentary excessive negative pressure. In a multi-stage drainage cannula, the main drainage site is the proximal side hole, with little negative pressure applied at the apical foramen in a mock experimental ex vivo drainage test in a water tank. Hence, improvement of a multi-stage drainage cannula is recommended, such as adequate reinforcement of the side hole site with a wire.

5.
J Anesth ; 37(3): 487-491, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36930274

RESUMO

Pancreatic injury is considered an organ-related complication in patients with coronavirus disease 2019 (COVID-19). However, it is unclear whether COVID-19 status affects pancreatic injury. This retrospective study aimed to determine whether COVID-19 affects the occurrence of pancreatic injuries. Consecutive patients diagnosed with sepsis admitted to the ICU between March 2020 and September 2021 were included. The primary endpoint was a pancreatic injury, which was defined as amylase or lipase levels > 3 times the upper limit of the normal range. Among the 177 patients included in the analysis, 40 (23%) were COVID-19 patients, and 54 (31%) had pancreatic injuries. Of these three patients, acute pancreatitis was diagnosed based on computed tomography. The pancreatic injury was significantly more common among COVID-19 patients (75 vs. 18%, p < 0.001). Multivariate analysis showed that COVID-19 and steroid use were independent risk factors for pancreatic injury (Odds Ratio (OR) 4.79 [95% confidence interval (CI) 1.48-15.5], p = 0.009; OR 4.02 [95% CI 1.42-11.4], p = 0.009). This study revealed that the proportion of pancreatic injury in septic patients with COVID-19 was significantly higher than in those without COVID-19. It may be difficult to diagnose pancreatitis based on amylase and lipase levels in COVID-19 patients.


Assuntos
COVID-19 , Pancreatite , Humanos , Pancreatite/diagnóstico , Pancreatite/epidemiologia , Pancreatite/etiologia , Estudos Retrospectivos , Doença Aguda , COVID-19/complicações , Amilases , Lipase
6.
Fujita Med J ; 8(4): 108-113, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415830

RESUMO

Objectives: Our aims were to clarify the actual situation regarding preoperative fasting and determine whether multidisciplinary interventions in a perioperative management center shorten the duration of preoperative fasting. Methods: The cohort of this before-and-after study comprised patients undergoing elective surgery aged 18 years or older who underwent general anesthesia at one of three stages: after starting a short preoperative fasting protocol (Group A), after the anesthesiologist started explaining the protocol (Group B), and after the start of the perioperative management center (Group C). Instructions on drinking clear fluids were given up to 2 h and 4 h before the start of elective surgery to the first patient on the list (on-time) and to the second and subsequent patients (on-call), respectively. Data were collected retrospectively in Groups A and B and prospectively in Group C. Results: The study cohort comprised 89 patients in Group A (50 on-time, 39 on-call), 108 in Group B (65 on-time, 43 on-call), and 284 in Group C (182 on-time, 102 on-call). The difference between the instructed and last drinking time was significantly shorter in Group C than Group A (30 [10, 140] vs. 30 [10, 60] vs. 20 [0, 50] min, p=0.003). The duration of fasting was significantly shorter in Group C than Group B (243 [150, 395] vs. 213 [151, 323] vs. 180 [146, 280] min, p=0.01). Conclusions: Multidisciplinary interventions at the perioperative management center tended to reduce the duration of fasting, suggesting that this approach may contribute to improved compliance.

7.
Membranes (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005726

RESUMO

Blood purification is performed to control cytokines in critically ill patients. The relationship between the clearance (CL) and the membrane area during adsorption is not clear. We hypothesized that the CL increases with the hydrophobic area when hydrophobic binding contributes to cytokine adsorption. We investigated the relationship between the hemofilter membrane area and the CL of the high mobility group box 1 protein (HMGB-1) and interleukin-6 (IL-6). We performed experimental hemofiltration in vitro using polymethyl methacrylate membranes CH-1.8W (1.8 m2) and CH-1.0N (1.0 m2), as well as polysulfone membrane NV-18X (1.8 m2). After adding 100 mg of HMGB1 or 10 µg of IL-6 into the test solution, experimental hemofiltration was conducted for 360 min in a closed-loop circulation system, and the same amount of HMGB1 and IL-6 was added after 180 min. With CH-1.8W and CH-1.0N, both HMGB-1 and IL-6 showed a rapid concentration decrease of more than 70% at 180 min and 360 min after the re-addition. At 15 min, the CL of HMGB-1 was CH-1.8W: 28.4 and CH-1.0N: 19.8, and that of IL-6 was CH-1.8W: 41.1 and CH-1.0N: 25.4. CH-1.8W and CH-1.0N removed HMGB1 and IL-6 by adsorption and CH-1.8W was superior in CL, which increased with a greater membrane area.

8.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328736

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by an excess deposition of extracellular matrix in the pulmonary interstitium. Caveolin-1 scaffolding domain peptide (CSP) has been found to mitigate pulmonary fibrosis in several animal models. However, its pathophysiological role in IPF is obscure, and it remains critical to understand the mechanism by which CSP protects against pulmonary fibrosis. We first studied the delivery of CSP into cells and found that it is internalized and accumulated in the Endoplasmic Reticulum (ER). Furthermore, CSP reduced ER stress via suppression of inositol requiring enzyme1α (IRE1α) in transforming growth factor ß (TGFß)-treated human IPF lung fibroblasts (hIPF-Lfs). Moreover, we found that CSP enhanced the gelatinolytic activity of TGFß-treated hIPF-Lfs. The IRE1α inhibitor; 4µ8C also augmented the gelatinolytic activity of TGFß-treated hIPF-Lfs, supporting the concept that CSP induced inhibition of the IRE1α pathway. Furthermore, CSP significantly elevated expression of MMPs in TGFß-treated hIPF-Lfs, but conversely decreased the secretion of collagen 1. Similar results were observed in two preclinical murine models of PF, bleomycin (BLM)- and adenovirus expressing constitutively active TGFß (Ad-TGFß)-induced PF. Our findings provide new insights into the mechanism by which lung fibroblasts contribute to CSP dependent protection against lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Bleomicina , Caveolina 1/genética , Caveolina 1/metabolismo , Endorribonucleases/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases , Fator de Crescimento Transformador beta/metabolismo
9.
Stem Cell Res Ther ; 13(1): 111, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313961

RESUMO

BACKGROUND: The cGMP-dependent type 2 protein kinase, encoded by the prkg2 gene, is highly expressed in alveolar type 2 epithelial (AT2) cells. It is unclear whether prkg2 regulates AT2 cell homeostasis and re-alveolarization of injured lungs. This study aimed to investigate the role of prkg2 in the regulation of the fate of AT2 in vitro. METHODS: Primary AT2 cells of wild-type (wt) and prkg2-/- mice were co-cultured with fibroblasts as three-dimensional organoids. The colony formation was analyzed between days 4 and 12 post-seeding. EdU assay was used to detect cells with active DNA synthesis. AT1 and AT2 cells in organoids were visualized with anti-podoplanin and anti-surfactant protein C antibodies, respectively. RESULTS: Prkg2-/- AT2 cells developed a greater number of organoids than wt controls. However, compared to wt organoids, a lower number of AT2 but a greater number of AT1 cells were visualized. In addition, a lower number of proliferated cells (EdU+) were observed in prkg2-/- organoids compared to wt controls. The numbers of organoids and EdU+ cells were significantly reduced in protein kinase A (PKA) inhibitor H89-treated wt and prkg2-/- cultures. Organoids and EdU+ cells were increased by lipopolysaccharides (LPS) in both wt and prkg2-/- groups. The increase in the proportion of AT1 and AT2 cells in organoids was only seen in wt controls. CONCLUSIONS: Prkg2 may regulate the lineage of AT2 cells, which is affected by endotoxins and the interactive PKA signaling pathway.


Assuntos
Pulmão , Organogênese , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos , Transdução de Sinais
10.
Respirol Case Rep ; 10(3): e0912, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35198214

RESUMO

Secondary fungal infections are a critical problem that accompany immunosuppressive therapy for severe coronavirus disease 2019 (COVID-19). We report a fatal case of COVID-19 with disseminated mucormycosis diagnosed during autopsy. A 58-year-old man with diabetes was hospitalized for severe COVID-19 and treated with remdesivir, systemic steroids and tocilizumab. Following treatment, he was provided extracorporeal membrane oxygenation support. However, he died of multiple organ failure accompanied by pulmonary and kidney infarction, as revealed by computed tomography. Autopsy revealed that the infarction was caused by thromboangiitis due to mucormycosis in the brain, lungs, heart, liver and kidneys. Therefore, the diagnosis of disseminated mucormycosis was established. Disseminated mucormycosis is a rare complication of COVID-19. Although its early diagnosis is difficult, the disease progresses rapidly. Hence, we propose that immunosuppressive treatment for COVID-19 should be administered with caution considering the risk of developing severe opportunistic infections, such as mucormycosis.

11.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L348-L364, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018804

RESUMO

Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-ß (TGF-ß) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not ß-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-ß significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.


Assuntos
Miofibroblastos , Pleura , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Células Cultivadas , Fibrose , Humanos , Proteínas dos Microfilamentos , Miofibroblastos/metabolismo , Pleura/patologia , Fator de Crescimento Transformador beta/farmacologia , Calponinas
12.
Sci Rep ; 11(1): 21210, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707211

RESUMO

Pleural fibrosis (PF) is a chronic and progressive lung disease which affects approximately 30,000 people per year in the United States. Injury and sustained inflammation of the pleural space can result in PF, restricting lung expansion and impairing oxygen exchange. During the progression of pleural injury, normal pleural mesothelial cells (PMCs) undergo a transition, termed mesothelial mesenchymal transition (MesoMT). While multiple components of the fibrinolytic pathway have been investigated in pleural remodeling and PF, the role of the urokinase type plasminogen activator receptor (uPAR) is unknown. We found that uPAR is robustly expressed by pleural mesothelial cells in PF. Downregulation of uPAR by siRNA blocked TGF-ß mediated MesoMT. TGF-ß was also found to significantly induce uPA expression in PMCs undergoing MesoMT. Like uPAR, uPA downregulation blocked TGF-ß mediated MesoMT. Further, uPAR is critical for uPA mediated MesoMT. LRP1 downregulation likewise blunted TGF-ß mediated MesoMT. These findings are consistent with in vivo analyses, which showed that uPAR knockout mice were protected from S. pneumoniae-mediated decrements in lung function and restriction. Histological assessments of pleural fibrosis including pleural thickening and α-SMA expression were likewise reduced in uPAR knockout mice compared to WT mice. These studies strongly support the concept that uPAR targeting strategies could be beneficial for the treatment of PF.


Assuntos
Transição Epitelial-Mesenquimal , Pneumonia Bacteriana/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Infecções Estreptocócicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Epitélio/metabolismo , Epitélio/patologia , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pleura/metabolismo , Pleura/patologia , Pneumonia Bacteriana/patologia , Infecções Estreptocócicas/patologia , Ativador de Plasminogênio Tipo Uroquinase/genética
13.
Ther Apher Dial ; 25(4): 401-406, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33886132

RESUMO

Myoglobin, which can cause acute kidney injury, has a relatively high molecular weight and is poorly cleared by diffusion. We compared and examined myoglobin clearance by changing the blood purification membrane and modality in patients with a myoglobin blood concentration ≥ 1000 ng/ml. We retrospectively analyzed three patient groups based on the following three types of continuous hemofiltration (CHF): AN69ST membrane, polymethylmethacrylate (PMMA) membrane, and high-flow hemodiafiltration (HDF) with increased dialysate flow rate using the PMMA membrane. There was no significant difference in clearance in CHF between AN69ST and PMMA membranes. However, the high-flow HDF group showed the highest myoglobin clearance (p = 0.003). In the PMMA membrane, changing the treatment modality to high-flow HDF increased clearance above the theoretical value, possibly due to internal filtration. To remove myoglobin by kidney replacement therapy from patients with hypermyoglobinemia, a modality such as high-flow HDF would be desirable.


Assuntos
Hemodiafiltração/métodos , Hemofiltração/métodos , Membranas Artificiais , Mioglobina/sangue , Injúria Renal Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimetil Metacrilato , Estudos Retrospectivos
14.
Polymers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803487

RESUMO

Achieving multiple physical properties from a single material through three-dimensional (3D) printing is important for manufacturing applications. In addition, industrial-level durability and reliability is necessary for realizing individualized manufacturing of devices using 3D printers. We investigated the properties of architected materials composed of ultraviolet (UV)-cured urethane elastomers for use as insoles. The durability and reliability of microlattice and metafoam architected materials were compared with those composed of various foamed materials currently used in medical insoles. The hardness of the architected materials was able to be continuously adjusted by controlling the design parameters, and the combination of the two materials was effective in controlling rebound resilience. In particular, the features of the architected materials were helpful for customizing the insole properties, such as hardness, propulsive force, and shock absorption, according to the user's needs. Further, using elastomer as a component led to better results in fatigue testing and UV resistance compared with the plastic foam currently used for medical purposes. Specifically, polyethylene and ethylene vinyl acetate were deformed in the fatigue test, and polyurethane was mechanically deteriorated by UV rays. Therefore, these architected materials are expected to be reliable for long-term use in insoles.

16.
Am J Respir Cell Mol Biol ; 64(4): 492-503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513310

RESUMO

Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3ß, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-ß- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.


Assuntos
Transição Epitelial-Mesenquimal , NADPH Oxidase 1/metabolismo , Pleura/enzimologia , Pleurisia/enzimologia , Pneumonia Pneumocócica/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator Xa/metabolismo , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/deficiência , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Pleura/microbiologia , Pleura/patologia , Pleurisia/microbiologia , Pleurisia/patologia , Pleurisia/fisiopatologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Transdução de Sinais , Trombina/metabolismo
17.
J Artif Organs ; 24(2): 282-286, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32772194

RESUMO

Spontaneous abdominal wall hematomas are relatively rare and mainly attributed to anticoagulation and severe cough. Despite the high incidence of anticoagulation-related bleeding complications, there are no reports of spontaneous abdominal wall hematomas during extracorporeal membrane oxygenation (ECMO). We report a case of a spontaneous rectus sheath hematoma caused by alternation of the lateral semi-prone position during ECMO in a 76-year-old female patient with severe acute respiratory distress syndrome. Unfractionated heparin 12,000-14,000 units/day was administered for anticoagulation during ECMO. From Day 6 of ECMO, the patient who was under deep sedation was alternately placed in the left and right lateral semi-prone positions every 4 h, for approximately 20 h per day. On Day 12 of ECMO, the patient developed hypotension with anemia and a palpable mass in the right lower abdomen. Abdominal ultrasonographic imaging revealed a huge echo-free space centered in the right lower abdomen. Emergency contrast-enhanced computed tomography (CT) scanning showed extravasation from the superior and inferior epigastric arteries as well as a rectus sheath hematoma. Despite no apparent contrast leakage, an inferior epigastric artery embolization was undertaken because the patient was on ECMO. On Day 13 after ECMO initiation, ECMO and anticoagulation were discontinued. On CT scanning a week later, the hematoma had reduced. In conclusion, spontaneous abdominal wall hematoma is a rare and important complication that might occur during ECMO. Thus, careful physical examination should be routinely conducted when the patient is semi-prone during ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Hemorragia Gastrointestinal/etiologia , Hematoma/etiologia , Doenças Musculares/etiologia , Posicionamento do Paciente/efeitos adversos , Idoso , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Artérias Epigástricas/cirurgia , Feminino , Hemorragia Gastrointestinal/diagnóstico , Hematoma/diagnóstico , Hematoma/terapia , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Postura/fisiologia , Decúbito Ventral/fisiologia , Reto do Abdome/irrigação sanguínea , Reto do Abdome/diagnóstico por imagem , Reto do Abdome/patologia , Síndrome do Desconforto Respiratório/terapia , Tomografia Computadorizada por Raios X/efeitos adversos
18.
J Cell Physiol ; 235(1): 114-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347175

RESUMO

Myosin phosphatase-Rho interacting protein (p116Rip ) was originally found as a RhoA-binding protein. Subsequent studies by us and others revealed that p116Rip facilitates myosin light chain phosphatase (MLCP) activity through direct and indirect manners. However, it is unclear how p116Rip regulates myosin phosphatase activity in cells. To elucidate the role of p116Rip in cellular contractile processes, we suppressed the expression of p116Rip by RNA interference in human airway smooth muscle cells (HASMCs). We found that knockdown of p116Rip in HASMCs led to increased di-phosphorylated MLC (pMLC), that is phosphorylation at both Ser19 and Thr18. This was because of a change in the interaction between MLCP and myosin, but not an alteration of RhoA/ROCK signaling. Attenuation of Zipper-interacting protein kinase (ZIPK) abolished the increase in di-pMLC, suggesting that ZIPK is involved in this process. Moreover, suppression of p116Rip expression in HASMCs substantially increased the histamine-induced collagen gel contraction. We also found that expression of the p116Rip was decreased in the airway smooth muscle tissue from asthmatic patients compared with that from non-asthmatic patients, suggesting a potential role of p116Rip expression in asthma pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Miócitos de Músculo Liso/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Colforsina/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Histamina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatase de Miosina-de-Cadeia-Leve/genética , Adulto Jovem
19.
Sci Rep ; 9(1): 18925, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831767

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of 3 years after diagnosis. Although the etiology of IPF is unknown, it is characterized by extensive alveolar epithelial cell apoptosis and proliferation of myofibroblasts in the lungs. While the origins of these myofibroblast appear to be diverse, fibroblast differentiation contributes to expansion of myofibroblasts and to disease progression. We found that agents that contribute to neomatrix formation and remodeling in pulmonary fibrosis (PF); TGF-ß, Factor Xa, thrombin, plasmin and uPA all induced fibroblast/myofibroblast differentiation. These same mediators enhanced GSK-3ß activation via phosphorylation of tyrosine-216 (p-Y216). Inhibition of GSK-3ß signaling with the novel inhibitor 9-ING-41 blocked the induction of myofibroblast markers; α-SMA and Col-1 and reduced morphological changes of myofibroblast differentiation. In in vivo studies, the progression of TGF-ß and bleomycin mediated PF was significantly attenuated by 9-ING-41 administered at 7 and 14 days respectively after the establishment of injury. Specifically, 9-ING-41 treatment significantly improved lung function (compliance and lung volumes; p < 0.05) of TGF-ß adenovirus treated mice compared to controls. Similar results were found in mice with bleomycin-induced PF. These studies clearly show that activation of the GSK-3ß signaling pathway is critical for the induction of myofibroblast differentiation in lung fibroblasts ex vivo and pulmonary fibrosis in vivo. The results offer a strong premise supporting the continued investigation of the GSK-3ß signaling pathway in the control of fibroblast-myofibroblast differentiation and fibrosing lung injury. These data provide a strong rationale for extension of clinical trials of 9-ING-41 to patients with IPF.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Indóis/farmacologia , Pulmão/enzimologia , Maleimidas/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia
20.
Theranostics ; 9(26): 8155-8170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754387

RESUMO

Lung epithelial sodium channel (ENaC) encoded by Scnn1 genes is essential for maintaining transepithelial salt and fluid homeostasis in the airway and the lung. Compared to α, ß, and γ subunits, the role of respiratory δ-ENaC has not been studied in vivo due to the lack of animal models. Methods: We characterized full-length human δ802-ENaC expressed in both Xenopus oocytes and humanized transgenic mice. AT2 proliferation and differentiation in 3D organoids were analysed with FACS and a confocal microscope. Both two-electrode voltage clamp and Ussing chamber systems were applied to digitize δ802-ENaC channel activity. Immunoblotting was utilized to analyse δ802-ENaC protein. Transcripts of individual ENaC subunits in human lung tissues were quantitated with qPCR. Results: The results indicate that δ802-ENaC functions as an amiloride-inhibitable Na+ channel. Inhibitory peptide α-13 distinguishes δ802- from α-type ENaC channels. Modified proteolysis of γ-ENaC by plasmin and aprotinin did not alter the inhibition of amiloride and α-13 peptide. Expression of δ802-ENaC at the apical membrane of respiratory epithelium was detected with biophysical features similar to those of heterologously expressed channels in oocytes. δ802-ENaC regulated alveologenesis through facilitating the proliferation of alveolar type 2 epithelial cells. Conclusion: The humanized mouse line conditionally expressing human δ802-ENaC is a novel model for studying the expression and function of this protein in vivo .


Assuntos
Canais Epiteliais de Sódio/genética , Modelos Animais , Células Epiteliais Alveolares/metabolismo , Animais , Canais Epiteliais de Sódio/metabolismo , Expressão Gênica , Humanos , Transporte de Íons/genética , Transporte de Íons/fisiologia , Camundongos , Camundongos Transgênicos/metabolismo , Oócitos , Células-Tronco/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...