Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397042

RESUMO

Food shortages are one of the most serious problems caused by global warming and population growth in this century [...].


Assuntos
Agricultura , Botânica , Japão , Produtos Agrícolas
2.
J Proteomics ; 294: 105073, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218429

RESUMO

The irradiation with millimeter-wave (MMW) of wheat seeds promotes root growth under flooding stress; however, its role is not completely clarified. Nuclear proteomics was performed, to reveal the role of MMW irradiation in enhancing flooding tolerance. The purity of nuclear fractions purified from roots was verified. Histone, which is a protein marker for nuclear-purification efficiency, was enriched; and cytosolic ascorbate peroxidase was reduced in the nuclear fraction. The principal-component analysis of proteome displayed that the irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level by irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that MMW irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system. SIGNIFICANCE: To reveal the role of millimeter-wave irradiation in enhancing flooding tolerance in wheat, nuclear proteomics was performed. The principal-component analysis of proteome displayed that irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level with irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that millimeter-wave irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system.


Assuntos
Histonas , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Histonas/metabolismo , Triticum/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico , Ubiquitina/metabolismo , Glycine max , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Inundações , Regulação da Expressão Gênica de Plantas
3.
J Proteomics ; 294: 105072, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218428

RESUMO

Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive­oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.


Assuntos
Cicloexenos , Glycine max , Proteômica , Terpenos , Proteômica/métodos , Actinas/metabolismo , Raízes de Plantas/metabolismo , Estresse Salino , Peroxidases/análise , Peroxidases/metabolismo , Peroxidases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Nucleares/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas Quinases/metabolismo , Dinaminas/análise , Dinaminas/metabolismo , Dinaminas/farmacologia , Hidrolases/análise , Hidrolases/metabolismo , Hidrolases/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Oxigênio/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
4.
Plant Physiol Biochem ; 203: 108066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797384

RESUMO

We have previously shown that rice plants silenced for peroxisomal ascorbate peroxidase (OsAPX4-RNAi) display higher resilience to photosynthesis under oxidative stress and photorespiratory conditions. However, the redox mechanisms underlying that intriguing response remain unknown. Here, we tested the hypothesis that favorable effects triggered by peroxisomal APX deficiency on photosynthesis resilience under CAT inhibition are dependent on the intensity of photorespiration associated with the abundance of photosynthetic and redox proteins. Non-transformed (NT) and OsAPX4-RNAi silenced rice plants were grown under ambient (AC) or high CO2 (HC) conditions and subjected to 3-amino-1,2,4-triazole (3-AT)-mediated CAT activity inhibition. Photosynthetic measurements evidenced that OsAPX4-RNAi plants simultaneously exposed to CAT inhibition and HC lost the previously acquired advantage in photosynthesis resilience displayed under AC. Silenced plants exposed to environment photorespiration and CAT inhibition presented lower photorespiration as indicated by smaller Gly/Ser and Jo/Jc ratios and glycolate oxidase activity. Interestingly, when these silenced plants were exposed to HC and CAT-inhibition, they exhibited an inverse response compared to AC in terms of photorespiration indicators, associated with higher accumulation of proteins. Multivariate and correlation network analyses suggest that the proteomics changes induced by HC combined with CAT inhibition are substantially different between NT and OsAPX4-RNAi plants. Our results suggest that the intensity of photorespiration and peroxisomal APX-mediated redox signaling are tightly regulated under CAT inhibition induced oxidative stress, which can modulate the photosynthetic efficiency, possibly via a coordinated regulation of protein abundance and rearrangement, ultimately triggered by crosstalk involving H2O2 levels related to CAT and APX activities in peroxisomes.


Assuntos
Oryza , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotossíntese , Estresse Oxidativo , Plantas/metabolismo , Ascorbato Peroxidases/metabolismo
5.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762035

RESUMO

Salt stress of soybean is a serious problem because it reduces plant growth and seed yield. To investigate the salt-tolerant mechanism of soybean, a plant-derived smoke (PDS) solution was used. Three-day-old soybeans were subjected to PDS solution under 100 mM NaCl for 2 days, resulting in PDS solution improving soybean root growth, even under salt stress. Under the same condition, proteins were analyzed using the proteomic technique. Differential abundance proteins were associated with transport/formaldehyde catabolic process/sucrose metabolism/glutathione metabolism/cell wall organization in the biological process and membrane/Golgi in the cellular component with or without PDS solution under salt stress. Immuno-blot analysis confirmed that osmotin, alcohol dehydrogenase, and sucrose synthase increased with salt stress and decreased with additional PDS solution; however, H+ATPase showed opposite effects. Cellulose synthase and xyloglucan endotransglucosylase/hydrolase increased with salt and decreased with additional PDS solution. Furthermore, glycoproteins decreased with salt stress and recovered with additional treatment. As mitochondrion-related events, the contents of ATP and gamma-aminobutyric acid increased with salt stress and recovered with additional treatment. These results suggest that PDS solution improves the soybean growth by alleviating salt stress. Additionally, the regulation of energy metabolism, protein glycosylation, and cell wall construction might be an important factor for the acquisition of salt tolerance in soybean.


Assuntos
Glycine max , Fumaça , Proteômica , Estresse Salino , Sementes
6.
Plants (Basel) ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571018

RESUMO

Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.

7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240359

RESUMO

Millimeter-wave irradiation of wheat seeds enhances the growth of roots under flooding stress, but its mechanism is not clearly understood. To understand the role of millimeter-wave irradiation on root-growth enhancement, membrane proteomics was performed. Membrane fractions purified from wheat roots were evaluated for purity. H+-ATPase and calnexin, which are protein markers for membrane-purification efficiency, were enriched in a membrane fraction. A principal-component analysis of the proteomic results indicated that the millimeter-wave irradiation of seeds affects membrane proteins in grown roots. Proteins identified using proteomic analysis were confirmed using immunoblot or polymerase chain reaction analyses. The abundance of cellulose synthetase, which is a plasma-membrane protein, decreased under flooding stress; however, it increased with millimeter-wave irradiation. On the other hand, the abundance of calnexin and V-ATPase, which are proteins in the endoplasmic reticulum and vacuolar, increased under flooding stress; however, it decreased with millimeter-wave irradiation. Furthermore, NADH dehydrogenase, which is found in mitochondria membranes, was upregulated due to flooding stress but downregulated following millimeter-wave irradiation even under flooding stress. The ATP content showed a similar trend toward change in NADH dehydrogenase expression. These results suggest that millimeter-wave irradiation improves the root growth of wheat via the transitions of proteins in the plasma membrane, endoplasmic reticulum, vacuolar, and mitochondria.


Assuntos
Raízes de Plantas , Estresse Fisiológico , Raízes de Plantas/metabolismo , Triticum/metabolismo , Proteômica/métodos , Calnexina/metabolismo , NADH Desidrogenase/metabolismo , Inundações , Glycine max/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203688

RESUMO

Flooding stress, which reduces plant growth and seed yield, is a serious problem for soybean. To improve the productivity of flooded soybean, flooding-tolerant soybean was produced by gamma-ray irradiation. Three-day-old wild-type and mutant-line plants were flooded for 2 days. Protein, RNA, and genomic DNA were then analyzed based on oppositely changed proteins between the wild type and the mutant line under flooding stress. They were associated with cell organization, RNA metabolism, and protein degradation according to proteomic analysis. Immunoblot analysis confirmed that the accumulation of beta-tubulin/beta-actin increased in the wild type under flooding stress and recovered to the control level in the mutant line; however, alpha-tubulin increased in both the wild type and the mutant line under stress. Ubiquitin was accumulated and genomic DNA was degraded by flooding stress in the wild type; however, they were almost the same as control levels in the mutant line. On the other hand, the gene expression level of RNase H and 60S ribosomal protein did not change in either the wild type or the mutant line under flooding stress. Furthermore, chlorophyll a/b decreased and increased in the wild type and the mutant line, respectively, under flooding stress. These results suggest that the regulation of cell organization and protein degradation might be an important factor in the acquisition of flooding tolerance in soybean.


Assuntos
Glycine max , Proteômica , Raios gama , Glycine max/genética , Clorofila A , Actinas , RNA , DNA
9.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365330

RESUMO

Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.

10.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142271

RESUMO

Flooding impairs wheat growth and considerably affects yield productivity worldwide. On the other hand, irradiation with millimeter waves enhanced the growth of chickpea and soybean under flooding stress. In the current work, millimeter-wave irradiation notably enhanced wheat growth, even under flooding stress. To explore the protective mechanisms of millimeter-wave irradiation on wheat under flooding, quantitative proteomics was performed. According to functional categorization, proteins whose abundances were changed significantly with and without irradiation under flooding stress were correlated to glycolysis, reactive-oxygen species scavenging, cell organization, and hormonal metabolism. Immunoblot analysis confirmed that fructose-bisphosphate aldolase and ß tubulin accumulated in root and leaf under flooding; however, even in such condition, their accumulations were recovered to the control level in irradiated wheat. The abundance of ascorbate peroxidase increased in leaf under flooding and recovered to the control level in irradiated wheat. Because the abundance of auxin-related proteins changed with millimeter-wave irradiation, auxin was applied to wheat under flooding, resulting in the application of auxin improving its growth, even in such condition. These results suggest that millimeter-wave irradiation on wheat seeds improves the recovery of plant growth from flooding via the regulation of glycolysis, reactive-oxygen species scavenging, and cell organization. Additionally, millimeter-wave irradiation could promote tolerance against flooding through the regulation of auxin contents in wheat.


Assuntos
Proteômica , Triticum , Ascorbato Peroxidases/metabolismo , Inundações , Frutose-Bifosfato Aldolase/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica/métodos , Glycine max/metabolismo , Estresse Fisiológico , Triticum/metabolismo , Tubulina (Proteína)/metabolismo
11.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806419

RESUMO

Nanoparticles (NPs) enhance soybean growth; however, their precise mechanism is not clearly understood. To develop a more effective method using NPs for the enhancement of soybean growth, fiber crosslinked with zinc oxide (ZnO) NPs was prepared. The solution of ZnO NPs with 200 nm promoted soybean growth at the concentration of 10 ppm, while fibers crosslinked with ZnO NPs promoted growth at a 1 ppm concentration. Soybeans grown on fiber cross-linked with ZnO NPs had higher Zn content in their roots than those grown in ZnO NPs solution. To study the positive mechanism of fiber crosslinked with ZnO NPs on soybean growth, a proteomic technique was used. Proteins categorized in photosynthesis and secondary metabolism accumulated more in soybeans grown on fiber crosslinked with ZnO NPs than in those grown in ZnO NPs solution. Furthermore, significantly accumulated proteins, which were NADPH oxidoreductase and tubulins, were confirmed using immunoblot analysis. The abundance of NADPH oxidoreductase increased in soybean by ZnO NPs application. These results suggest that fiber crosslinked with ZnO NPs enhances soybean growth through the increase of photosynthesis and secondary metabolism. Additionally, the accumulation of NADPH oxidoreductase might relate to the effect of auxin with fiber crosslinked with ZnO NPs on soybean growth.


Assuntos
Fabaceae , Nanopartículas , Óxido de Zinco , Fabaceae/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Proteômica , Plântula/metabolismo , Glycine max/metabolismo , Zinco/metabolismo , Óxido de Zinco/química
12.
Plants (Basel) ; 11(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684281

RESUMO

Wheat is an important staple food crop for one-third of the global population; however, its growth is reduced by flooding. On the other hand, a plant-derived smoke solution enhances plant growth; however, its mechanism is not fully understood. To reveal the effects of the plant-derived smoke solution on wheat under flooding, morphological, biochemical, and proteomic analyses were conducted. The plant-derived smoke solution improved wheat-leaf growth, even under flooding. According to the functional categorization of proteomic results, oppositely changed proteins were correlated with photosynthesis, glycolysis, biotic stress, and amino-acid metabolism with or without the plant-derived smoke solution under flooding. Immunoblot analysis confirmed that RuBisCO activase and RuBisCO large/small subunits, which decreased under flooding, were recovered by the application of the plant-derived smoke solution. Furthermore, the contents of chlorophylls a and b significantly decreased by flooding stress; however, they were recovered by the application of the plant-derived smoke solution. In glycolysis, fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase decreased with the application of the plant-derived smoke solution under flooding as compared with flooding alone. Additionally, glutamine, glutamic acid, aspartic acid, and serine decreased under flooding; however, they were recovered by the plant-derived smoke solution. These results suggest that the application of the plant-derived smoke solution improves the recovery of wheat growth through the regulation of photosynthesis and glycolysis even under flooding conditions. Furthermore, the plant-derived smoke solution might promote wheat tolerance against flooding stress through the regulation of amino-acid metabolism.

13.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742828

RESUMO

Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.


Assuntos
Inundações , Reguladores de Crescimento de Plantas , Produtos Agrícolas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Glycine max/genética , Estresse Fisiológico/genética
14.
Cells ; 11(9)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563885

RESUMO

Wheat is vulnerable to numerous diseases; on the other hand, silver nanoparticles (AgNPs) exhibit a sterilizing action. To understand the combined effects of AgNPs with nicotinate and potassium nitrate (KNO3) for plant growth and sterilization, a gel- and label-free proteomics was performed. Root weight was promoted by the treatment of AgNPs mixed with nicotinate and KNO3. From a total of 5557 detected proteins, 90 proteins were changed by the mixture of AgNPs, nicotinate, and KNO3; among them, 25 and 65 proteins increased and decreased, respectively. The changed proteins were mainly associated with redox and biotic stress in the functional categorization. By immunoblot analysis, the abundance of glutathione reductase/peroxiredoxin and pathogen-related protein three significantly decreased with the mixture. Furthermore, from the changed proteins, the abundance of starch synthase and lipoxygenase significantly increased and decreased, respectively. Through biochemical analysis, the starch contents increased with the mixture. The application of esculetin, which is a lipoxygenase inhibitor, increased the weight and length of the root. These results suggest that the AgNPs mixed with nicotinate and KNO3 cause positive effects on wheat seedlings by regulating pathogen-related protein and reactive-oxygen species scavenging. Furthermore, increasing starch and decreasing lipoxygenase might improve wheat growth.


Assuntos
Compostos Inorgânicos , Nanopartículas Metálicas , Niacina , Compostos Inorgânicos/farmacologia , Lipoxigenases , Nanopartículas Metálicas/química , Niacina/farmacologia , Proteômica , Prata/farmacologia , Amido , Triticum
15.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613697

RESUMO

Proteomics offers one of the best approaches for the functional analysis of the genome, generating detailed information that can be integrated with that obtained by other classic and omics approaches [...].


Assuntos
Plantas , Proteômica , Genoma
16.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613963

RESUMO

Salt stress is an unfavorable outcome of global climate change, adversely affecting crop growth and yield. It is the second-biggest abiotic factor damaging the morphological, physio-biochemical, and molecular processes during seed germination and plant development. Salt responses include modulation of hormonal biosynthesis, ionic homeostasis, the antioxidant defense system, and osmoprotectants to mitigate salt stress. Plants trigger salt-responsive genes, proteins, and metabolites to cope with the damaging effects of a high salt concentration. Enhancing salt tolerance among crop plants is direly needed for sustainable global agriculture. Novel protein markers, which are used for crop improvement against salt stress, are identified using proteomic techniques. As compared to single-technique approaches, the integration of genomic tools and exogenously applied chemicals offers great potential in addressing salt-stress-induced challenges. The interplay of salt-responsive proteins and genes is the missing key of salt tolerance. The development of salt-tolerant crop varieties can be achieved by integrated approaches encompassing proteomics, metabolomics, genomics, and genome-editing tools. In this review, the current information about the morphological, physiological, and molecular mechanisms of salt response/tolerance in crops is summarized. The significance of proteomic approaches to improve salt tolerance in various crops is highlighted, and an integrated omics approach to achieve global food security is discussed. Novel proteins that respond to salt stress are potential candidates for future breeding of salt tolerance.


Assuntos
Melhoramento Vegetal , Proteômica , Proteômica/métodos , Produtos Agrícolas/genética , Genômica/métodos , Tolerância ao Sal/genética , Estresse Fisiológico/genética
17.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948158

RESUMO

Large-scale high-throughput multi-omics technologies are indispensable components of systems biology in terms of discovering and defining parts of the system [...].


Assuntos
Proteínas de Plantas , Plantas , Proteômica , Estresse Fisiológico , Biologia de Sistemas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
18.
Mol Omics ; 17(6): 860-880, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870299

RESUMO

Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.


Assuntos
Proteínas de Plantas , Proteômica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830127

RESUMO

Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.


Assuntos
Radiação Eletromagnética/classificação , Plantas/metabolismo , Plantas/efeitos da radiação , Proteoma/metabolismo , Proteômica/métodos , Raios gama , Luz , Micro-Ondas , Ondas de Rádio , Raios Ultravioleta , Raios X
20.
Proteomes ; 9(4)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698284

RESUMO

Plant-derived smoke solution enhances soybean root growth; however, its mechanism is not clearly understood. Subcellular proteomics techniques were used for underlying roles of plant-derived smoke solution on soybean root growth. The fractions of membrane and nucleus were purified and evaluated for purity. ATPase and histone were enriched in the fractions of membrane and nucleus, respectively. Principal component analysis of proteomic results indicated that the plant-derived smoke solution affected the proteins in the membrane and nucleus. The proteins in the membrane and nucleus mainly increased and decreased, respectively, by the treatment of plant-derived smoke solution compared with control. In the proteins in the plasma membrane, ATPase increased, which was confirmed by immunoblot analysis, and ATP contents increased through the treatment of plant-derived smoke solution. Additionally, although the nuclear proteins mainly decreased, the expression of RNA polymerase II was up-regulated through the treatment of plant-derived smoke solution. These results indicate that plant-derived smoke solution enhanced soybean root growth through the transcriptional promotion with RNA polymerase II expression and the energy production with ATPase accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...