Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 205(1): e0039022, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622228

RESUMO

Bacterial lipoproteins are membrane-associated proteins with a characteristic acylated N-terminal cysteine residue anchoring C-terminal globular domains to the membrane surface. While all lipoproteins are modified with acyl chains, the number, length, and position can vary depending on host. The acylation pattern also alters ligand recognition by the Toll-like receptor 2 (TLR2) protein family, a signaling system that is central to bacterial surveillance and innate immunity. In select Listeria monocytogenes isolates carrying certain plasmids, copper exposure converts the lipoprotein chemotype into a weak TLR2 ligand through expression of the enzyme lipoprotein intramolecular acyltransferase (Lit). In this study, we identify the response regulator (CopR) from a heavy metal-sensing two-component system as the transcription factor that integrates external copper levels with lipoprotein structural modifications. We show that phosphorylated CopR controls the expression of three distinct transcripts within the plasmid cassette encoding Lit2, prolipoprotein diacylglyceryl transferase (Lgt2), putative copper resistance determinants, and itself (the CopRS two-component system). CopR recognizes a direct repeat half-site consensus motif (TCTACACA) separated by 3 bp that overlaps the -35 promoter element. Target gene expression and lipoprotein conversion were not observed in the absence of the response regulator, indicating that CopR phosphorylation is the dominant mechanism of regulation. IMPORTANCE Copper is a frontline antimicrobial used to limit bacterial growth in multiple settings. Here, we demonstrate how the response regulator CopR from a plasmid-borne two-component system in the opportunistic pathogen L. monocytogenes directly induces lipoprotein remodeling in tandem with copper resistance genes due to extracellular copper stress. Activation of CopR by phosphorylation converts the lipoprotein chemotype from a high- to low-immunostimulatory TLR2 ligand. The two-component system-mediated coregulation of copper resistance determinants, in tandem with lipoprotein biosynthesis demonstrated here in L. monocytogenes, may be a common feature of transmissible copper resistance cassettes found in other Firmicutes.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Receptor 2 Toll-Like , Cobre/metabolismo , Ligantes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Bactérias/metabolismo
2.
J Bacteriol ; 205(1): e0039122, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622231

RESUMO

The renowned antimicrobial activity of copper stems in part from its ability to undergo redox cycling between Cu1+/2+ oxidation states. Bacteria counter copper toxicity with a network of sensors that often include two-component signaling systems to direct transcriptional responses. As in typical two-component systems, ligand binding by the extracellular domain of the membrane bound copper sensor component leads to phosphorylation and activation of the cognate response regulator transcription factor. In Listeria monocytogenes, the plasmid-borne CopRS two-component system upregulates both copper resistance and lipoprotein remodeling genes upon copper challenge, but the oxidation state of copper bound by CopS is unknown. Herein, we show CopS utilizes a triad of key residues (His-His-Phe) that are predicted to be at the dimerization interface and that are analogous with the Escherichia coli CusS copper sensor to specifically bind Cu1+/Ag1+ and activate CopR transcription. We demonstrate Cu2+ only induces CopRS if first reduced by electron transport systems, as strains lacking menaquinone carriers were unable to respond to Cu2+. The flavin-dependent extracellular electron transport system (EET) was the main mechanism for metal reduction, capable of either generating inducing ligand (Cu2+ to Cu1+) or removing it by precipitation (Ag1+ to Ag0). We show that EET flux is directly proportional to the rate of Cu2+ reduction and that since EET activity is low under oxygenated conditions when a competing respiratory chain is operating, CopRS signaling in turn is activated only under anaerobic conditions. EET metal reduction thus sensitizes cells to copper while providing resistance to silver under anaerobic growth. IMPORTANCE Two-component extracellular copper sensing from the periplasm of Gram-negative bacteria has been well studied, but copper detection at the cell surface of the Gram-positive L. monocytogenes is less understood. Collectively, our results show that EET is most active under anaerobic conditions and reduces Cu2+ and Ag1+ to, respectively, generate or remove the monovalent ligands that directly bind to CopS and lead to the induction of lipoprotein remodeling genes. This reducing activity regulates CopRS signaling and links the upregulation of copper resistance genes with increasing EET flux. Our studies provide insight into how a two-component copper sensing system is integrated into a model monoderm Firmicute to take cues from the electron transport chain activity.


Assuntos
Cobre , Listeria monocytogenes , Cobre/metabolismo , Transporte de Elétrons , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Histidina Quinase/metabolismo , Anaerobiose , Ligantes , Escherichia coli/metabolismo , Prata
3.
mBio ; 11(4)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723923

RESUMO

Bacterial lipoproteins (Lpps) are a class of membrane-associated proteins universally distributed among all bacteria. A characteristic N-terminal cysteine residue that is variably acylated anchors C-terminal globular domains to the extracellular surface, where they serve numerous roles, including in the capture and transport of essential nutrients. Lpps are also ligands for the Toll-like receptor 2 (TLR2) family, a key component of the innate immune system tasked with bacterial recognition. While Lpp function is conserved in all prokaryotes, structural heterogeneity in the N-terminal acylation state is widespread among Firmicutes and can differ between otherwise closely related species. In this study, we identify a novel two-gene system that directs the synthesis of N-acylated Lpps in the commensal and opportunistic pathogen subset of staphylococci. The two genes, which we have named the lipoprotein N -acylation transferase system (Lns), bear no resemblance to previously characterized N-terminal Lpp tailoring enzymes. LnsA (SAOUHSC_00822) is an NlpC/P60 superfamily enzyme, whereas LnsB (SAOHSC_02761) has remote homology to the CAAX protease and bacteriocin-processing enzyme (CPBP) family. Both LnsA and LnsB are together necessary and alone sufficient for N-acylation in Staphylococcus aureus and convert the Lpp chemotype from diacyl to triacyl when heterologously expressed in Listeria monocytogenes Acquisition of lnsAB decreases TLR2-mediated detection of S. aureus by nearly 10-fold and shifts the activated TLR2 complex from TLR2/6 to TLR2/1. LnsAB thus has a dual role in attenuating TLR2 signaling in addition to a broader role in bacterial cell envelope physiology.IMPORTANCE Although it has long been known that S. aureus forms triacylated Lpps, a lack of homologs to known N-acylation genes found in Gram-negative bacteria has until now precluded identification of the genes responsible for this Lpp modification. Here, we demonstrate N-terminal Lpp acylation and chemotype conversion to the tri-acylated state is directed by a unique acyl transferase system encoded by two noncontiguous staphylococci genes (lnsAB). Since triacylated Lpps stimulate TLR2 more weakly than their diacylated counterparts, Lpp N-acylation is an important TLR2 immunoevasion factor for determining tolerance or nontolerance in niches such as in the skin microbiota. The discovery of the LnsAB system expands the known diversity of Lpp biosynthesis pathways and acyl transfer biochemistry in bacteria, advances our understanding of Lpp structural heterogeneity, and helps differentiate commensal and noncommensal microbiota.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipoproteínas/metabolismo , Transdução de Sinais , Staphylococcus aureus/enzimologia , Acilação , Aciltransferases/genética , Biocatálise , Células HEK293 , Humanos , Receptor 2 Toll-Like/metabolismo
4.
J Biol Chem ; 295(30): 10195-10211, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32471867

RESUMO

All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base-promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.


Assuntos
Proteínas de Bactérias/biossíntese , Enterococcus faecalis/metabolismo , Lipoproteínas/biossíntese , Acilação , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Lipoproteínas/genética
5.
J Biol Chem ; 294(50): 19405-19423, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31704704

RESUMO

Lipopolysaccharide (LPS) from the Gram-negative bacterial outer membrane potently activates the human innate immune system. LPS is recognized by the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD2) complex, leading to the release of pro-inflammatory cytokines. Alkaline phosphatase (AP) is currently being investigated as an anti-inflammatory agent for detoxifying LPS through dephosphorylating lipid A, thus providing a potential treatment for managing both acute (sepsis) and chronic (metabolic endotoxemia) pathologies wherein aberrant TLR4/MD2 activation has been implicated. Endogenous LPS preparations are chemically heterogeneous, and little is known regarding the LPS chemotype substrate range of AP. Here, we investigated the activity of AP on a panel of structurally defined LPS chemotypes isolated from Escherichia coli and demonstrate that calf intestinal AP (cIAP) has only minimal activity against unmodified enteric LPS chemotypes. Pi was only released from a subset of LPS chemotypes harboring spontaneously labile phosphoethanolamine (PEtN) modifications connected through phosphoanhydride bonds. We demonstrate that the spontaneously hydrolyzed O-phosphorylethanolamine is the actual substrate for AP. We found that the 1- and 4'-lipid A phosphate groups critical in TLR4/MD2 signaling become susceptible to hydrolysis only after de-O-acylation of ester linked primary acyl chains on lipid A. Furthermore, PEtN modifications on lipid A specifically enhanced hTLR4 agonist activity of underacylated LPS preparations. Computational binding models are proposed to explain the limitation of AP substrate specificity imposed by the acylation state of lipid A, and the mechanism of PEtN in enhancing hTLR4/MD2 signaling.


Assuntos
Fosfatase Alcalina/metabolismo , Intestinos/enzimologia , Lipopolissacarídeos/metabolismo , Animais , Bovinos , Escherichia coli/química , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
6.
J Bacteriol ; 201(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988036

RESUMO

Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and N-acylation variability in general is presently not fully understood. In Enterococcus faecalis, lipoproteins are anchored by an N-acyl-S-monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of Listeria monocytogenes and Enterococcus spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of L. monocytogenes type strains to the α-amino-modified lyso form observed in E. faecalis Conversion to the lyso form through either copper addition to media or constitutive expression of lit2 decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer.IMPORTANCE The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.


Assuntos
Aciltransferases/genética , Cobre/metabolismo , Lipoproteínas/metabolismo , Listeria monocytogenes/genética , Receptor 2 Toll-Like/imunologia , Acilação , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Células HEK293 , Humanos , Listeria monocytogenes/enzimologia , Óperon , Transdução de Sinais
7.
Bioorg Med Chem ; 22(24): 6961-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25456389

RESUMO

The naturally occurring adenine based carbocyclic nucleosides aristeromycin and neplanocin A and their 3-deaza analogues have found a prominent place in the search for diverse antiviral activity agent scaffolds because of their ability to inhibit S-adenosylhomocysteine (AdoHcy) hydrolase. Following the lead of these compounds, their 3-deaza-3-fluoroaristeromycin analogues have been synthesized and their effect on S-adenosylhomocysteine hydrolase and RNA and DNA viruses determined.


Assuntos
Antivirais/síntese química , S-Adenosil-Homocisteína/análogos & derivados , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Vírus de RNA/efeitos dos fármacos , S-Adenosil-Homocisteína/síntese química , S-Adenosil-Homocisteína/farmacologia , Células Vero
8.
Virol J ; 3: 18, 2006 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-16571131

RESUMO

Inhibition of the human cytomegalovirus UL97 kinase by maribavir is thought to be responsible for the antiviral activity of this compound. Some mutations that confer resistance to maribavir map to UL97, however additional mutations that also confer resistance to the drug were mapped to UL27. These open reading frames share a low level of homology, yet the function of pUL27 remains unknown. A recombinant virus with a deletion in the UL27 open reading frame was reported previously to exhibit a slight replication deficit, but a more important function in vivo was hypothesized given its homology to the UL97 kinase. The potential for an important function in vivo was investigated by determining if these knockout viruses could replicate in human tissue implanted in SCID mice. None of the AD169 derived viruses replicated well in the implanted thymus/liver tissue, and is consistent with previous observations, although all of the viruses replicated to some degree in retinal tissue implants. Replication of the parent viruses was observed at 7 days post inoculation, whereas no replication was detected with any of the recombinant viruses with deletions in UL27. By day 14, replication was detected in two of the three knockout viruses and in all of the viruses by day 42. These data are consistent with minimal defects observed in cell culture, but are not consistent with an important role for UL27 in vivo. We conclude that UL27 is not required for viral replication in vivo.


Assuntos
Citomegalovirus/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Citomegalovirus/genética , Deleção de Genes , Humanos , Fígado/virologia , Transplante de Fígado , Camundongos , Camundongos SCID , Retina/transplante , Retina/virologia , Timo/transplante , Timo/virologia , Proteínas Virais/genética
9.
J Virol ; 79(18): 12025-34, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16140778

RESUMO

The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.


Assuntos
DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sequência Conservada , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Teste de Complementação Genética , Herpesvirus Humano 1/genética , Técnicas In Vitro , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
10.
Antimicrob Agents Chemother ; 48(10): 3918-27, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388453

RESUMO

The benzimidazole nucleosides 2-bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)benzimidazole (BDCRB) and 2-isopropylamino-5,6-dichloro-1-(beta-l-ribofuranosyl)benzimidazole (1263W94, or maribavir) are potent and selective inhibitors of human cytomegalovirus (HCMV) replication. These inhibitors act by two different mechanisms: BDCRB blocks the processing and maturation of viral DNA, whereas maribavir prevents viral DNA synthesis and capsid nuclear egress. In order to determine by which of these two mechanisms other benzimidazole nucleosides acted, we performed time-of-addition studies and other experiments with selected new analogs. We found that the erythrofuranosyl analog and the alpha-lyxofuranosyl analog acted late in the viral replication cycle, similar to BDCRB. In marked contrast, the alpha-5'-deoxylyxofuranosyl analog of 2,5,6-trichloro-1-(beta-d-ribofuranosyl)benzimidazole (compound UMJD1311) acted early in the replication cycle, too early to be consistent with either mechanism. Similar to other reports on early acting inhibitors of herpesviruses, compound 1311 was multiplicity of infection dependent, an observation that could not be reproduced with UV-inactivated virus. HCMV isolates resistant to BDCRB and maribavir were sensitive to compound 1311, as were viruses resistant to ganciclovir, cidofovir, and foscarnet. The preincubation of host cells with compound 1311 and removal prior to the addition of HCMV did not produce an antiviral cellular response. We conclude that this newly discovered early mode of action occurs at a stage of viral replication after entry to cells but prior to viral DNA synthesis, thereby strongly suggesting that the trisubstituted benzimidazole nucleoside series possesses three distinct biochemical modes of action for inhibition of HCMV replication.


Assuntos
Benzimidazóis/farmacologia , Citomegalovirus/crescimento & desenvolvimento , Nucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Células Cultivadas , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/ultraestrutura , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática , Humanos , Ribonucleosídeos/farmacologia , Relação Estrutura-Atividade , Raios Ultravioleta , Ensaio de Placa Viral
11.
J Virol ; 78(2): 710-5, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14694102

RESUMO

The benzimidazole D-ribonucleosides TCRB and BDCRB are potent and selective inhibitors of human cytomegalovirus (HCMV) replication. Two HCMV strains resistant to these compounds were selected and had resistance mutations in genes UL89 and UL56. Proteins encoded by these two genes are the two subunits of the HCMV "terminase" and are necessary for cleavage and packaging of viral genomic DNA, a process inhibited by TCRB and BDCRB. We now report that both strains also have a previously unidentified mutation in UL104, the HCMV portal protein. This mutation, which results in L21F substitution, was introduced into the genome of wild-type HCMV by utilizing a recently cloned genome of HCMV as a bacterial artificial chromosome. The virus with this mutation alone was not resistant to BDCRB, suggesting that this site is not involved in binding benzimidazole nucleosides. As in previous proposals for mutations in UL104 of murine cytomegalovirus and HCMV strains resistant to BAY 38-4766, we hypothesize that this mutation could compensate for conformational changes in mutant UL89 and UL56 proteins, since the HCMV terminase is likely to interact with the portal protein during cleavage and packaging of genomic DNA.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Proteínas do Capsídeo/genética , Citomegalovirus/efeitos dos fármacos , Farmacorresistência Viral/genética , Ribonucleosídeos/farmacologia , Proteínas Virais/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana/métodos , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
J Virol ; 77(21): 11499-506, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14557635

RESUMO

1-(beta-D-Ribofuranosyl)-2,5,6-trichlorobenzimidazole (TCRB) and its 2-bromo analog, BDCRB, are potent and selective inhibitors of human cytomegalovirus (HCMV) DNA processing and packaging. Since they are readily metabolized in vivo, analogs were synthesized to improve biostability. One of these, 1-(beta-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94; maribavir), inhibits viral DNA synthesis and nuclear egress. Resistance to maribavir was mapped to UL97, and this viral kinase was shown to be a direct target of maribavir. In the present study, an HCMV strain resistant to TCRB and BDCRB was passaged in increasing concentrations of maribavir, and resistant virus was isolated. This strain (G2) grew at the same rate as the wild-type virus and was resistant to both BDCRB and maribavir. Resistance to BDCRB was expected, because the parent strain from which G2 was isolated was resistant due to known mutations in UL56 and UL89. However, no mutations were found in UL97 or other relevant open reading frames that could explain resistance to maribavir. Because sequencing of selected HCMV genes did not identify the resistance mutation, a cosmid library was made from G2, and a series of recombinant G2 wild-type viruses were constructed. Testing the recombinants for sensitivity to maribavir narrowed the locus of resistance to genes UL26 to UL32. Sequencing identified a single coding mutation in ORF UL27 (Leu335Pro) as the one responsible for resistance to maribavir. These results establish that UL27 is either directly or indirectly involved in the mechanism of action of maribavir. They also suggest that UL27 could play a role in HCMV DNA synthesis or egress of HCMV particles from the nucleus.


Assuntos
Benzimidazóis/farmacologia , Mapeamento Cromossômico , Citomegalovirus/efeitos dos fármacos , Farmacorresistência Viral , Ribonucleosídeos/farmacologia , Proteínas Virais/genética , Sequência de Aminoácidos , Antivirais/farmacologia , Células Cultivadas , Citomegalovirus/genética , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Ensaio de Placa Viral , Proteínas Virais/metabolismo
14.
Antiviral Res ; 56(1): 61-72, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12323400

RESUMO

This study describes the extent of cross-resistance and interactions for selected inhibitors of human cytomegalovirus (HCMV) DNA synthesis and DNA processing. HCMV isolates resistant to the benzimidazole D-ribonucleoside viral DNA processing inhibitors TCRB and BDCRB were sensitive to BAY 38-4766, a non-nucleoside inhibitor of viral DNA processing. This indicates that these two drug types have distinct interactions with the products of HCMV genes UL56 and UL89 required for viral DNA cleavage and packaging. These virus isolates also were sensitive to ganciclovir (GCV) but slightly resistant to the L-benzimidazole ribonucleoside viral DNA synthesis inhibitor 1263W94. Virus resistant to 1263W94 remained sensitive to BDCRB, GCV, and BAY 38-4766. Examination of drug-drug interactions in cell culture assays measuring inhibition of HCMV replication revealed strong synergism for the combination of BDCRB with 1263W94, and for combinations of 1263W94 with cidofovir (CDV) and foscarnet (PFA), but not with GCV. Combinations of GCV with CDV and PFA were synergistic as well. The combination of GCV with 1263W94 showed additive antiviral interactions, whereas, a combination of BAY 38-4766 with GCV showed antagonism. Interaction of BDCRB with BAY 38-4766 showed a mixed pattern of synergy and antagonism. The antiviral synergy observed between GCV and PFA or CDV serves to validate clinical combination therapies for these drugs. Antagonism seen for BAY 38-4766 with GCV indicates that these two drugs are unlikely to be useful for combination therapies. Notably, 1263W94 demonstrated greater synergy in combination with PFA or CDV than did GCV, suggesting some promise for this benzimidazole L-riboside in such combination therapies.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Citomegalovirus/efeitos dos fármacos , Ribonucleosídeos/farmacologia , Linhagem Celular , Citomegalovirus/fisiologia , Antagonismo de Drogas , Interações Medicamentosas , Farmacorresistência Viral , Sinergismo Farmacológico , Humanos , Naftalenossulfonatos/farmacologia , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...