Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484277

RESUMO

Heterogeneous photocatalysis has been considered one of the most effective and efficient techniques to remove organic contaminants from wastewater. The present work was designed to examine the photocatalytic performance of metal (Cu and Ni) doped ZnO nanocomposites in methyl orange (MO) dye degradation under UV light illumination. The wurtzite hexagonal structure was observed for both undoped/doped ZnO and a crystalline size ranging between 8.84 ± 0.71 to 12.91 ± 0.84 nm by X-ray diffraction (XRD) analysis. The scanning electron microscope (SEM) and energy dispersive X-ray (EDX) revealed the irregular spherical shape with particle diameter (34.43 ± 6.03 to 26.43 ± 4.14 nm) and ensured the purity of the individual elemental composition respectively. The chemical bonds (O-H group) and binding energy (1021.8 eV) were identified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results respectively. The bandgap energy was decreased from 3.44 to 3.16 eV when Ni dopant was added to the ZnO lattice. The comparative photocatalytic activity was observed in undoped and doped nanocomposites and found to be 76.31%, 81.95%, 89.30%, and 83.39% for ZnO, Cu/ZnO, Ni/ZnO, and Cu/Ni/ZnO photocatalysts, respectively, for a particular dose (0.210 g) and dye concentration (10 mg L-1) after 180 min illumination of UV light. The photocatalytic performance was increased up to 94.40% with the increase of pH (12.0) whereas reduced (35.12%) with an increase in initial dye concentration (40 mg L-1) using Ni/ZnO nanocomposite. The Ni/ZnO nanocomposite showed excellent reusability and was found 81% after four consecutive cycles. The best-fitted reaction kinetics was followed by pseudo-first-order and found reaction rate constant (0.0117 min-1) using Ni/ZnO nanocomposite. The enhanced photodegradation efficiency was observed due to decreases in bandgap energy and the crystalline size of the photocatalyst. Therefore, Ni/ZnO nanocomposite could be used as an emerging photocatalyst to degrade bio-persistent organic dye compounds from textile wastewater.

2.
Analyst ; 148(17): 4091-4098, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37486297

RESUMO

There is a demand for biosensors working under in vivo conditions, which requires significant device size and endurance miniaturization in solution environments. We demonstrated the detection of uric acid (UA) molecules, a marker of diseases like gout, whose continuous monitoring is required in medical diagnosis. We used a field effect transistor (FET) composed of an atomically thin transition metal dichalcogenide (TMD) channel. The sensor detection was carried out in a solution environment, for which we protected the electrodes of the source and drain from the solution. A microfluidic channel controls the solution flow that can realize evaporation-free conditions and provide an accurate concentration and precise measurement. We detected a systematic change of the drain current with the concentration of the UA in isopropyl alcohol (IPA) solvent with a detection limit of 60 nM. The sensor behavior is reversible, and the drain current returns to its original value when the channel is washed with pure solvent. The results demonstrate the feasibility of applying the MoS2-FET device to UA detection in solution, suggesting its possible use in the solution environment.

3.
Nano Lett ; 23(15): 6900-6906, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505070

RESUMO

We demonstrate that an intercalated Co atom in superconductor NbSe2 could control the magnetic interaction between the adsorbed magnetic molecule of TbPc2 and the NbSe2 substrate. An intercalated Co atom enhances the magnetic interaction between the NbSe2 and the TbPc2 spin to cause Kondo resonance at the TbPc2 position, a spin-singlet state formed by the itinerary electron. By applying a surface-normal magnetic field, we change the molecule's spin direction from the initial one directed to the Co atom to the surface normal. The change appears as a split Kondo resonance at the TbPc2, one of which is enhanced at the Tb site, which disappears when the outer magnetic field normal to the surface is applied and never appears, even if we return B to 0 T. The phenomenon suggests that the intercalated magnetic atoms can control the magnetic interaction between a magnetic molecule and the superconductor NbSe2.

4.
Nano Lett ; 23(1): 213-219, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36585948

RESUMO

The spintronic properties of magnetic molecules have attracted significant scientific attention. Special emphasis has been placed on the qubit for quantum information processing. The single-molecule magnet bis(phthalocyaninato (Pc)) Tb(III) (TbPc2) is one of the best examined cases in which the delocalized π-radical electron spin of the Pc ligand plays the key role in reading and intermediating the localized Tb spin qubits. We utilized the electron spin resonance (ESR) technique implemented on a scanning tunneling microscope (STM) and use it to measure local the ESR of a single TbPc2 molecule decoupled from the Cu(100) substrate by a two-monolayer NaCl film to identify the π-radical spin. We detected the ESR signal at the ligand positions under the resonance condition expected for an S = 1/2 spin. The results reveal that the π-radical electron is delocalized within the ligands and exhibits intramolecular coupling susceptible to the chemical environment.

5.
Nanoscale ; 14(27): 9860-9868, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35775580

RESUMO

We report the finding of a 1T phase island of NbSe2 on a cleaved surface and its magnetic properties. Tunneling spectroscopy at 400 mK shows robust peaks in the superconducting gap, which we assign to the Yu-Shiba-Rusinov (YSR) state originating from the magnetic moment placed in the superconducting state. The YSR peak appears on a specific position of an island of the 1T phase, not on the surrounding 2H phase area, and shows an anisotropic decay behavior. In addition, we found a close relationship between the enhancement of the YSR peak and the local curvature of the film. We assign the origin of the magnetic moment to the curvature of the 1T phase island, which can form a magnetic moment through a rotation of the wave function by a robust spin-orbit coupling, as indicated by a recent theoretical study.

6.
ACS Nano ; 16(5): 7651-7661, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35467334

RESUMO

We investigated the spin properties of the terbium phthalocyanine (TbPc) species adsorbed on the superconductor NbSe2 surface using scanning tunneling microscopy and spectroscopy. TbPc2 is a molecule in a class of single-molecule magnets (SMMs), and the use of superconductor electrodes attracts attention for the application to the devices using the spin degree of freedom. TbPc is a building block of TbPc2 and can reveal the spin component's behavior. In the experiment, TbPc species were placed on the surface of the superconductor NbSe2. We measured Yu-Shiba-Rusinov (YSR) states caused by the interaction between the superconducting state and magnetic impurity and inelastic tunneling spectroscopy (IETS) for the spin excitation, below 1 K. We also measured the Kondo state formed by the magnetic singlet formation. We detected the radical spin at the ligand position of the TbPc by the presence of the Kondo peak and demonstrated that the radical spin forms the YSR feature. In addition, the exchange interaction energy (Eex) between the spins of the radical ligand (Pc) and the center 4f metal atom (Tb3+) is determined by using the IETS technique. Eex is a critical parameter that determines the blocking temperature, below which the sample behaves as an SMM. IETS results show that the statistical distribution of Eex has peaked at 1.3, 1.6, and 1.9 meV. The energy range is comparable to the recent theoretical calculation result. In addition, we show that the energy variation is correlated with the bonding configuration of TbPc.

7.
Phys Chem Chem Phys ; 23(48): 27273-27281, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34850795

RESUMO

We have explored the chemical reaction of the photoisomerization and thermal reaction of the photochromic spiropyran (SP) 1',3'-Dihydro-1',3',3' trimethyl-6-nitrospiro[2H-1 benzopyran-2,2'-(2H)-indole] molecule deposited on the atomic thin channel of a MoS2 field-effect transistor (FET) through the analysis of the FET property. With four monolayers of SP molecules on the channel, we observed a clear shift of the threshold voltage in the drain-current vs gate-voltage plot with UV-light injection on the molecule, which was due to the change of the SP molecule to merocyanine (MC). A complete reset from MC to SP molecule was achieved by thermal annealing, while the injection of green light could revert the FET property to the original condition. In the process of change from MC to SP, two types of decay rates were confirmed. The quick- and slow-decay components corresponded to the molecules attached directly to the substrate and those in the upper layer, respectively. The activation energies for the conversion of MC to SP molecules were estimated as 71 kJ/mol and 90 kJ/mol for the former and latter, respectively. Combined with DFT calculations, we concluded that the Id-Vg shift with photoisomerization from SP to MC is due to the upper layer molecules and the dipole moment in the surface normal direction. Based on the estimated activation energy of 90 kJ/mol for the reset process, we calculated the conversion rate in a controllable temperature range. From these values, we consider that the chemical state of MC can be maintained and switched in a designated time period, which demonstrates the possibility of this system in logical operation applications.

9.
RSC Adv ; 11(43): 26509-26515, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479991

RESUMO

The application of field-effect transistor (FET) devices with atomically thin channels as sensors has attracted significant attention, where the adsorption of atoms/molecules on the channels can be detected by the change in the properties of FET. Thus, to further enhance the chemical sensitivity of FETs, we developed a method to distinguish the chemical properties of adsorbates from the electric behavior of FET devices. Herein, we explored the variation in the FET properties of an MoS2-FET upon visible light injection and the effect of molecule adsorption for chemical recognition. By injecting light, the drain current (I d) increased from the light-off state, which is defined as (ΔI d)ph. We examined this effect using CuPc molecules deposited on the channel. The (ΔI d)ph vs. wavelength continuous spectrum in the visible region showed a peak at the energy for the excitation from the highest occupied orbital (HOMO) to the molecule-induced state (MIS). The energy position and the intensity of this feature showed a sensitive variation with the adsorption of the CuPc molecule and are in good agreement with previously reported photo-absorption spectroscopy data, indicating that this technique can be employed for chemical recognition.

10.
Nanotechnology ; 32(7): 075501, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091883

RESUMO

We investigate the sensor behavior of the MoS2 field effect transistor (FET) device with the deposition of methyl orange (MO) molecule which is widely used as a chemical probe. The channel of the FET is made of the single layer of MoS2 which makes it highly sensitive to the molecule adsorption, but at the same time the behavior depends much on the surface conditions of the MoS2 channel. In order to make the channel-surface conditions more defined, we prepare an in situ experimental system in which the molecule deposition and the surface- and electrical-characterization of the MoS2 FET are executed in a single ultra-high vacuum chamber. This system makes it possible to examine the change of the FET properties with precise control of the molecule coverage in the sub-monolayer region without the effect of the atmosphere. We detected the shift of the I d-V g curve of the MoS2-FET device with the increase of the molecule coverage (θ) of the MO molecule, which is quantitatively analyzed by plotting the threshold voltage (V th) of the I d-V g curve as a function of θ. The V th shifts towards the negative direction and the initial change with θ can be expressed with an exponential function of θ, which can be accounted for with the Langmuir type adsorption of the molecule for the first layer and the charge transfer from the molecule to the substrate. The V th versus θ curve shows a kink at a certain θ, which is conserved as the starting of the second layer growth. We detected the adsorption of MO far less than monolayer and the phase change from the first layer to the second layer growth, which is realized by the benefit of the in situ UHV experimental condition.

11.
ACS Omega ; 5(43): 28108-28115, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163793

RESUMO

We report a precise measurement of the sensor behavior of the field effect transistor (FET) formed with the MoS2 channel when the channel part is exposed to Cl2 gas. The gas exposure and the electrical measurement of the MoS2 FET were executed with in situ ultrahigh-vacuum (UHV) conditions in which the surface analysis techniques were equipped. This makes it possible to detect how much sensitivity the MoS2 FET can provide and understand the surface properties. With the Cl2 gas exposure to the channel, the plot of the drain current versus the gate voltage (I d-V g curve) shifts monotonically toward the positive direction of V g, suggesting that the adsorbate acts as an electron acceptor. The I d-V g shifts are numerically estimated by measuring the onset of I d (threshold voltage, V th) and the mobility as a function of the dosing amounts of the Cl2 gas. The behaviors of both the V th shift and the mobility with the Cl2 dosing amount can be fitted with the Langmuir adsorption kinetics, which is typically seen in the uptake curve of molecule adsorption onto well-defined surfaces. This can be accounted for by a model where an impinging molecule occupies an empty site with a certain probability, and each adsorbate receives a certain amount of negative charge from the MoS2 surface up to the monolayer coverage. The charge transfer makes the V th shifts. In addition, the mobility is reduced by the enhancement of the Coulomb scattering for the electron flow in the MoS2 channel by the accumulated charge. From the thermal desorption spectroscopy (TDS) measurement and density functional theory (DFT) calculations, we concluded that the adsorbate that is responsible for the change of the FET property is the Cl atom that is dissociated from the Cl2 molecule. The monotonic shift of V th with the coverage suggests that the MoS2 device sensor has a good sensitivity to detect 10-3 monolayers (ML) of adsorption corresponding to the ppb level sensor with an activation time of 1 s.

12.
Phys Chem Chem Phys ; 22(47): 27724-27731, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33242319

RESUMO

We investigated the sensor behavior of a field effect transistor, the channel of which is made of atomically thin MoS2 layers, focusing on the interaction of the MoS2 channel with the solution containing target molecules. For this purpose, we made a newly designed device in which the mask covered the electrodes of the source and the drain in order to make the solution contact only with the channel. In addition, a micro-fluid tank was fabricated above the channel as a solution reservoir. We examined the FET properties of this device for the sensing of the nicotine molecule for the development of a detection system for this molecule in the human body under in vivo conditions. We detected the sensor behavior both for the drop-cast process and for the condition where the channel contacts with the solution. The drain-current vs. gate-voltage variation of the MoS2-FET with the attachment of the nicotine molecule was clearly observed for both cases. For the latter case, the threshold voltage shifted in the negative gate-voltage direction with the increase of the concentration of the nicotine in the solution. This can be explained by the electron transfer from the molecule to the MoS2 channel, which was further confirmed by analyzing the X-ray photoemission spectroscopy and Raman spectroscopy together with the DFT calculation. The sensor can detect the variation of the nicotine concentration in the IPA solution by detecting the Vth change of the MoS2-FET.

13.
ACS Omega ; 5(12): 6676-6683, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258903

RESUMO

We investigated the structural and electronic/spin configurations of a film of the Co tetrakis(1,2,5-thiadiazole) porphyrazine (CoTTDPz) molecule adsorbed on the Au(111) surface by a scanning tunneling microscope (STM). CoTTDPz has a structure similar to that of the Co phthalocyanine molecule, but the benzene ring of the isoindole of the phthalocyanine molecule is replaced by the pentagon moiety of 1,2,5-thiadiazoles that has an S atom at the apex. We find an ordered molecular lattice with a threefold symmetry where a nearest-neighbor distance of 1.30 nm was measured, which is significantly smaller than that observed for the metal Pc molecule. The unit cell of the lattice contains two molecules that are rotated by 60° relative to each other. With the configuration achieved by this rotation, the neighboring molecules can form a stronger interaction through bonding between the S atom at the apex of one molecule and the N atom of the other (the N atom that is bridging the thiadiazoles). The strong interaction between the molecule and the substrate appears in the spin state examined by the detection of the Kondo resonance, which is formed by the screening of an isolated spin by the conduction electron. Even though the existence of the spin was confirmed for the bulk and thick films of this molecule, no Kondo features are detected for the molecules in the first, second, and third layers of the films. However, the isolated molecule in the third layer showed an intriguing combination of the Kondo feature and an inelastic excitation feature caused by a spin-flip process.

14.
Commun Chem ; 3(1): 36, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36703412

RESUMO

Magnetic molecules are of interest for application in spintronic and quantum-information processing devices. Therein, control of the interaction between the spins of neighboring molecules is the critical issue. Substitution of outer moieties of the molecule can tune the molecule-molecule interaction. Here we show a novel spin behavior for a magnetic molecule of vanadyl tetrakis (thiadiazole) porphyrazine (abbreviated as VOTTDPz) adsorbed on Au(111), which is modified from vanadyl phthalocyanine (VOPc) by replacing the inert phthalocyanine ligand with a reactive thiadiazole moiety. The magnetic properties of the molecules are examined by observing the Kondo resonance caused by the screening of an isolated spin by conduction electrons using scanning tunneling spectroscopy. The Kondo features are detected at the molecule whose shape and intensity show site-dependent variation, revealing complex spin-spin interactions due to the enhanced interaction between molecules, originating from the functionalization of the ligand with a more reactive moiety.

15.
Nanoscale ; 10(41): 19409-19417, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307449

RESUMO

The first step towards the synthesis of single-molecule magnet (SMM)-based spintronics devices is the organization and manipulation of magnetic molecules on surfaces. Our previous studies on bulk crystals demonstrated that protonated porphyrinato double-decker complexes [Tb(Hoep)(oep)] (oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato) are not SMMs; however, once a hydrogen is removed to produce their neutral radical forms, [Tb(oep)2], they convert to SMMs. These intriguing properties encouraged us to examine the electronic/spin properties of these complexes and their chemical conversion ability after their transfer onto a metal substrate, similar to the environment required for the practical application of SMMs. Herein, we conducted a single-molecule-scale conversion of the protonated bis(porphyrinato)terbium(iii) double-decker complex [Tb(Hoep)(oep)], whose hepta-coordinated terbium ion changes into octa-coordinated [Tb(oep)2] on detaching a hydrogen atom by scanning tunnelling microscopy. This conversion can be caused by the injection of tunnelling electrons of energy 1.5-2.5 eV. We confirmed the conversion by analysing the topographic image and the spin state of the molecule. The latter was achieved by examining the Kondo resonance, which originated from the screening of the molecular spin by the conduction electrons of the metal. The Kondo resonance was not observed for [Tb(Hoep)(oep)] but was observed for the converted species, which agrees well with a model containing the [Tb(oep)2] molecule and Kondo resonance originating from the π-electron spin of the porphyrin ligand. Even though it is not possible to provide complete evidence of the SMM properties of the transferred molecule, we have demonstrated a possible path to realize the switch-on SMM properties of a single molecule.

16.
Nano Lett ; 17(9): 5843-5847, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806089

RESUMO

Understanding the origin of perpendicular magnetic anisotropy in surface-supported nanoclusters is crucial for fundamental research as well as data storage applications. Here, we investigate the perpendicular magnetic anisotropy energy (MAE) of bilayer cobalt islands on Au(111) substrate using spin-polarized scanning tunneling microscopy at 4.6 K and first-principles theoretical calculations. Au(111) substrate serves as an excellent model system to study the effect of nucleation site and stacking sequence on MAE. Our measurements reveal that the MAE of bilayer islands depends strongly on the crystallographic stacking of the two Co layers and nucleation of the third layer. Moreover, the MAE of Co atoms on Au(111) is enhanced by a factor of 1.75 as compared to that reported on Cu(111). Our first-principles calculations attribute this enhancement to the large spin-orbit coupling of the Au atoms. Our results highlight the strong impact of nanometer-scale structural changes in Co islands on MAE and emphasize the importance of spatially resolved measurements for the magnetic characterization of surface-supported nanostructures.

17.
Dalton Trans ; 45(46): 18417-18433, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27824366

RESUMO

Since 2003, terbium(iii) bis-phthalocyaninato complexes have been recognised as acting as single molecule magnets (SMMs), propitiating multiple studies with the aim of better understanding the single metal-ion based magnetism with unusually high blocking temperatures. In the quest for novel applications, it became clear that if spintronic devices were made from SMM molecules, their confinement in the proximity of surfaces or electrodes would become difficult to circumvent. In this perspective article, we highlight the influence of the presence of different substrates on the magnetic performance of TbPc2-SMMs, in principle caused by, among other effects, electronic hybridization, dipole-dipole coupling and changing quantum tunnelling (QT) rates on the surface. We show that the improved comprehension of how SMMs interact and communicate with the environment finally leads to magnetic remanence and lower tunnelling rates, paving the way to novel classes of spintronic devices.

18.
Dalton Trans ; 45(42): 16644-16652, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27778005

RESUMO

In this article, we investigate a single molecule magnet bis(phthalocyaninato)terbium(iii) (TbPc2) molecule film by using low temperature STM. In order to investigate the effect of molecule-substrate interaction on the electronic and spin properties of the adsorbed molecule, we tune the molecule-substrate coupling by switching the substrate between Au(111) and Ag(111), the latter of which provides stronger interaction with the molecule than the former. Despite the enhanced chemical reactivity of the Ag(111) surface compared with Au(111), a well-organized pseudo-square film is formed. In addition, a checker-board type contrast variation is identified, which is well explained by the existence of two types of molecules whose rotational angle between the top and bottom Pc is θ = 45° (bright molecule) and θ = 30° (dark molecule). The expected stronger molecule-substrate interaction, however, appears as an intriguing dI/dV mapping image which reveals the spatial distribution of the density of states (DOS). We identify the contrast reversal in the dI/dV mapping for the molecules of θ = 45° and θ = 30° at the sample voltages of V = 0.7 eV and 1.1 eV. Combined with the density functional theory (DFT) calculation, we attribute this change to the shift of an electronic state due to the rotation of the mutual angle between the top and bottom Pc. For the spin behavior, we previously observed a Kondo resonance for the TbPc2 molecule adsorbed on the Au(111) surface. On the Ag(111) surface, the Kondo resonance is hardly observed, which is due to the annihilation of the π radical spin by the charge transfer from the substrate to the molecule. Instead we observe a Kondo peak for the molecule on the second layer, for which the spin recovers due to the reduction of the coupling with the substrate. In addition, when a magnetic field of 2 T normal to the surface is applied, the second layer molecule shows a sharp dip at the Fermi level. We attribute this to the inelastic tunneling feature caused by the spin flipping. This feature is not observed for the TbPc2/Au(111) system, suggesting that the decoupling between the TbPc2 molecule and Ag(111) by the presence of the first layer produces an inelastic feature in the tunneling spectra.

19.
Chem Rec ; 16(2): 987-1016, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26991524

RESUMO

Ever since the first example of a double-decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single-molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in Ln(III)-Pc-based multiple-decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear Tb(III)-Pc multiple-decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular Tb(III)-Tb(III) distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of Tb(III)-Pc-based multiple-decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of Tb(III)-Pc multiple-decker complexes.

20.
ACS Nano ; 9(11): 10540-4, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26524228

RESUMO

In this issue of ACS Nano, Nienhaus et al. report the optoelectronic properties of carbon nanotube chiral junctions with nanometer resolution in the presence of strong electric fields (∼1 V/nm). Here, we provide an overview of recent studies that combine scanning tunneling microscope (STM) and laser or microwave illumination. These techniques reveal nanoscale laser- or microwave-induced phenomena utilizing the intrinsic atomic resolution of the tunneling current, and do not require substantial modification of the STM itself. The merits of atomic-scale spatial resolution and chemical sensitivity of the laser or microwave spectroscopes make these techniques useful for nanoscale characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...