Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 824: 153697, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35143798

RESUMO

Climate change has the potential to cause forest range shifts at a broad scale and consequently can alter crucial forest functions, including carbon sequestration. However, global-scale projections of future forest range shifts remain challenging because our knowledge of the physiological responses of plants to climatic stress is limited to particular species and is insufficient for wide-range projections, in addition to the uncertainties in the impacts of non-climatic factors, such as wildfire, wind, and insect outbreaks. To evaluate the vulnerability and resilience of forests to climate change, we developed a new empirical approach using climatic indices reflecting physiological stressors on plants. We calculated the global distributions of seven indices based on primary climatic stressors (drought, solar radiation, and temperature) at high resolution. We then modeled the relationship between the seven indices and global forest extent. We found two key stressors driving climate-induced forest range shifts on a global scale: low temperature under high radiation and drought. At high latitudes of the Northern Hemisphere, forest establishment became difficult when the mean temperature was less than approximately 7.2 °C in the highest radiation quarter. Forest sensitivity to drought was more pronounced at mid-latitudes. In areas where the humidity index (ratio of precipitation to potential evapotranspiration) was below 0.45, shrubland and grassland became more dominant than forests. Our results also suggested that the impacts of climate change on global forest range shifts will be geographically biased depending on the areas affected by the key climatic stressors. Potential forest gain was remarkable in boreal regions due to increasing temperature. Potential forest loss was remarkable in current tropical grassland and temperate forest/grassland ecoregions due to increasing drought. Our approach using stress-reflecting indices could improve our ability to detect the roles of climatic stressors on climate-induced forest range shifts.


Assuntos
Florestas , Árvores , Mudança Climática , Secas , Temperatura , Árvores/fisiologia
3.
Tree Physiol ; 42(4): 784-796, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34635913

RESUMO

Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hinoki cypress, though the total pool of carbohydrate was not completely depleted.


Assuntos
Chamaecyparis , Secas , Carboidratos , Carbono/metabolismo , Chamaecyparis/metabolismo , Frutose , Glucose , Folhas de Planta/fisiologia , Amido/metabolismo , Açúcares/metabolismo , Árvores/fisiologia
4.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026137

RESUMO

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Assuntos
Gases de Efeito Estufa , Atmosfera , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Reprodutibilidade dos Testes , Respiração , Solo
5.
Nat Commun ; 10(1): 5240, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748549

RESUMO

Limiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG emission involve greater land-based mitigation efforts, which may cause biodiversity loss from land-use changes. Here we estimate how climate and land-based mitigation efforts interact with global biodiversity by using an integrated assessment model framework to project potential habitat for five major taxonomic groups. We find that stringent GHG mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation is adopted. This trend is strengthened in the latter half of this century. In contrast, some regions projected to experience much growth in land-based mitigation efforts (i.e., Europe and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity, however, these policies must be carefully designed in conjunction with land-use regulations and societal transformation in order to minimize the conversion of natural habitats.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Recuperação e Remediação Ambiental/métodos , Gases de Efeito Estufa , Anfíbios , Animais , Aves , Processos Climáticos , Mamíferos , Répteis , Traqueófitas
6.
BMC Ecol ; 19(1): 23, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288795

RESUMO

BACKGROUND: The Rock Ptarmigan Lagopus muta japonica lives in the alpine zones of central Japan, which is the southern limit of the global distribution for this species. This species is highly dependent on alpine habitats, which are considered vulnerable to rapid climate change. This study aimed to assess the impact of climate change on potential L. muta japonica habitat based on predicted changes to alpine vegetation, to identify population vulnerability under future climatic conditions for conservation planning. We developed species distribution models, which considered the structure of the alpine ecosystem by incorporating spatial hierarchy on specific environmental factors to assess the potential habitats for L. muta japonica under current and future climates. We used 24 general circulation models (GCMs) for 2081-2100 as future climate conditions. RESULTS: The predicted potential habitat for L. muta japonica was similar to the actual distribution of the territories in the study area of Japan's northern Alps (36.25-36.5°N, 137.5-137.7°E). Future potential habitat for L. muta japonica was projected to decrease to 0.4% of the current potential habitat in the median of occurrence probabilities under 24 GCMs, due to a decrease in alpine vegetation communities. Some potential habitats in the central and northwestern part of the study area were predicted to be sustained in the future, depending on the GCMs. CONCLUSIONS: Our model results predicted that the potential habitats for L. muta japonica in Japan's northern Alps, which provides core habitat for this subspecies, would be vulnerable by 2081-2100. Small sustainable habitats may serve as refugia, facilitating the survival of L. muta japonica populations under future climatic conditions. Impact assessment studies of the effect of climate change on L. muta japonica habitats at a nationwide scale are urgently required to establish effective conservation planning for this species, which includes identifying candidate areas for assisted migration as an adaptive strategy.


Assuntos
Mudança Climática , Ecossistema , Japão
7.
PLoS One ; 12(8): e0182837, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797067

RESUMO

Pine wilt disease (PWD) constitutes a serious threat to pine forests. Since development depends on temperature and drought, there is a concern that future climate change could lead to the spread of PWD infections. We evaluated the risk of PWD in 21 susceptible Pinus species on a global scale. The MB index, which represents the sum of the difference between the mean monthly temperature and 15 when the mean monthly temperatures exceeds 15°C, was used to determine current and future regions vulnerable to PWD (MB ≥ 22). For future climate conditions, we compared the difference in PWD risks among four different representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5) and two time periods (2050s and 2070s). We also evaluated the impact of climate change on habitat suitability for each Pinus species using species distribution models. The findings were then integrated and the potential risk of PWD spread under climate change was discussed. Within the natural Pinus distribution area, southern parts of North America, Europe, and Asia were categorized as vulnerable regions (MB ≥ 22; 16% of the total Pinus distribution area). Representative provinces in which PWD has been reported at least once overlapped with the vulnerable regions. All RCP scenarios showed expansion of vulnerable regions in northern parts of Europe, Asia, and North America under future climate conditions. By the 2070s, under RCP 8.5, an estimated increase in the area of vulnerable regions to approximately 50% of the total Pinus distribution area was revealed. In addition, the habitat conditions of a large portion of the Pinus distribution areas in Europe and Asia were deemed unsuitable by the 2070s under RCP 8.5. Approximately 40% of these regions overlapped with regions deemed vulnerable to PWD, suggesting that Pinus forests in these areas are at risk of serious damage due to habitat shifts and spread of PWD.


Assuntos
Mudança Climática , Modelos Teóricos , Pinus/crescimento & desenvolvimento , Doenças das Plantas , Clima , Ecossistema , Florestas , Temperatura
8.
Tree Physiol ; 37(8): 1011-1020, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338964

RESUMO

Plants allocate a considerable amount of carbon (C) to fine roots as respiration and exudation. Fine-root exudation could stimulate microbial activity, which further contributes to soil heterotrophic respiration. Although both root respiration and exudation are important components of belowground C cycling, how they relate to each other is less well known. In this study, we aimed to explore this relationship on mature trees growing in the field. The measurements were performed on two canopy species, Quercus serrata Thunb. and Quercus glauca, in a warm temperate forest. The respiration and exudation rates of the same fine-root segment were measured in parallel with a syringe-basis incubation and a closed static chamber, respectively. We also measured root traits and ectomycorrhizal colonization ratio because these indexes commonly relate to root respiration and reflect root physiology. The microbial activity enhanced by root exudation was investigated by comparing the dissolved organic carbon (DOC) and microbial biomass carbon (MBC) between rhizosphere soils and bulk soils. Mean DOC concentration and MBC were ca two times higher in the rhizosphere soils and positively related to exudation rates, indicating that exudation further relates to the C dynamics in the soils. Flux rates of exudation and respiration were positively correlated with each other. Both root exudation and respiration rates positively related to ectomycorrhizal colonization and root tissue nitrogen, and therefore the relationship between the two fluxes may be attributed to fine-root activity. The flux rates of root respiration were 8.7 and 10.5 times as much as those of exudation on a root-length basis and a root-weight basis, respectively. In spite of the fact that flux rates of respiration and exudation varied enormously among the fine-root segments of the two Quercus species, exudation was in proportion to respiration. This result gives new insight into the fine-root C-allocation strategy and the belowground C dynamics.


Assuntos
Ciclo do Carbono , Raízes de Plantas/fisiologia , Quercus/fisiologia , Florestas , Japão , Exsudatos de Plantas/análise , Rizosfera , Solo/química , Microbiologia do Solo , Árvores
9.
Sci Rep ; 6: 32549, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601188

RESUMO

Ground-level ozone (O3) concentrations are expected to increase over the 21(st) century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest.

10.
Ecol Evol ; 6(21): 7763-7775, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128126

RESUMO

Ongoing climate change and land-use change have the potential to substantially alter the distribution of large herbivores. This may result in drastic changes in ecosystems by changing plant-herbivore interactions. Here, we developed a model explaining sika deer persistence and colonization between 25 years in terms of neighborhood occupancy and habitat suitability. We used climatic, land-use, and topographic variables to calculate the habitat suitability and evaluated the contributions of the variables to past range changes of sika deer. We used this model to predict the changes in the range of sika deer over the next 100 years under four scenario groups with the combination of land-use change and climate change. Our results showed that both climate change and land-use change had affected the range of sika deer in the past 25 years. Habitat suitability increased in northern or mountainous regions, which account for 71.6% of Japan, in line with a decrease in the snow cover period. Habitat suitability decreased in suburban areas, which account for 28.4% of Japan, corresponding to land-use changes related to urbanization. In the next 100 years, the decrease in snow cover period and the increase in land abandonment were predicted to accelerate the range expansion of sika deer. Comparison of these two driving factors revealed that climate change will contribute more to range expansion, particularly from the 2070s onward. In scenarios that assumed the influence of both climate change and land-use change, the total sika deer range increased by between +4.6% and +11.9% from the baseline scenario. Climate change and land-use change will require additional efforts for future management of sika deer, particularly in the long term.

11.
PLoS One ; 9(10): e108404, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271761

RESUMO

We performed continuous and manual in situ measurements of CO2 efflux from the leaf litter layer (R(LL)) and water content of the leaf litter layer (LWC) in conjunction with measurements of soil respiration (RS) and soil water content (SWC) in a temperate forest; our objectives were to evaluate the response of R(LL) to rainfall events and to assess temporal variation in its contribution to R(S). We measured R(LL) in a treatment area from which all potential sources of CO2 except for the leaf litter layer were removed. Capacitance sensors were used to measure LWC. R(LL) increased immediately after wetting of the leaf litter layer; peak R(LL) values were observed during or one day after rainfall events and were up to 8.6-fold larger than R(LL) prior to rainfall. R(LL) declined to pre-wetting levels within 2-4 day after rainfall events and corresponded to decreasing LWC, indicating that annual R(LL) is strongly influenced by precipitation. Temporal variation in the observed contribution of R(LL) to RS varied from nearly zero to 51%. Continuous in situ measurements of LWC and CO2 efflux from leaf litter only, combined with measurements of RS, can provide robust data to clarify the response of R(LL) to rainfall events and its contribution to total R(S).


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Respiração Celular , Clima , Ecossistema , Florestas , Estações do Ano , Solo/química , Árvores
12.
Environ Pollut ; 184: 457-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121421

RESUMO

Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman-Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O3 uptake, even when the Penman-Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O3 uptake through stomata, as AOT40 peaked in April, but with O3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O3 uptake in springtime, even when the highest O3 concentrations were observed.


Assuntos
Poluentes Atmosféricos/metabolismo , Modelos Biológicos , Ozônio/metabolismo , Estômatos de Plantas/fisiologia , Árvores/fisiologia , Poluentes Atmosféricos/análise , Clima , Japão , Ozônio/análise , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano
13.
Tree Physiol ; 29(4): 579-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19203981

RESUMO

Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.


Assuntos
Dióxido de Carbono/metabolismo , Raízes de Plantas/metabolismo , Quercus/metabolismo , Biomassa , Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Quercus/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...