Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37317154

RESUMO

Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community's composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions. Therefore, tracking the effects of stresses on these populations in freshwater and brackish marshes is critical. The study addressed this by utilizing next generation sequencing (NGS) to construct a baseline soil microbial community. The carbon and sulfur cycles were studied by sequencing a microbial functional gene involved in each process, the mcrA and dsrA functional genes, respectively. Saline was introduced over two years to observe the taxonomic alterations that occurred after a long-term disturbance such as seawater intrusion. It was observed that saltwater dosing increased sulfite reduction in freshwater peat soils and decreased methylotrophy in brackish peat soils. These findings add to the understanding of microbiomes by demonstrating how changes in soil qualities impact communities both before and after a disturbance such as saltwater intrusion.

2.
Ecol Appl ; 32(8): e2702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35751522

RESUMO

Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( F AQ $$ {F}_{\mathrm{AQ}} $$ ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m-2  year-1 ; FAQ  = 317 ± 186 gC m-2  year-1 ). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = -366 ± 15 gC m-2  year-1 ; FAQ  = 311 ± 30 gC m-2  year-1 ) and elevated salinity (NECB = -594 ± 94 gC m-2  year-1 ; FAQ  = 729 ± 142 gC m-2  year-1 ) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150-1070 gC m-2  year-1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.


Assuntos
Elevação do Nível do Mar , Áreas Alagadas , Ecossistema , Carbono , Solo
3.
Ecosphere ; 13(4): e4019, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35573027

RESUMO

The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.

4.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235355

RESUMO

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

5.
Microorganisms ; 10(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208670

RESUMO

Planktonic microbial communities mediate many vital biogeochemical processes in wetland ecosystems, yet compared to other aquatic ecosystems, like oceans, lakes, rivers or estuaries, they remain relatively underexplored. Our study site, the Florida Everglades (USA)-a vast iconic wetland consisting of a slow-moving system of shallow rivers connecting freshwater marshes with coastal mangrove forests and seagrass meadows-is a highly threatened model ecosystem for studying salinity and nutrient gradients, as well as the effects of sea level rise and saltwater intrusion. This study provides the first high-resolution phylogenetic profiles of planktonic bacterial and eukaryotic microbial communities (using 16S and 18S rRNA gene amplicons) together with nutrient concentrations and environmental parameters at 14 sites along two transects covering two distinctly different drainages: the peat-based Shark River Slough (SRS) and marl-based Taylor Slough/Panhandle (TS/Ph). Both bacterial as well as eukaryotic community structures varied significantly along the salinity gradient. Although freshwater communities were relatively similar in both transects, bacterioplankton community composition at the ecotone (where freshwater and marine water mix) differed significantly. The most abundant taxa in the freshwater marshes include heterotrophic Polynucleobacter sp. and potentially phagotrophic cryptomonads of the genus Chilomonas, both of which could be key players in the transfer of detritus-based biomass to higher trophic levels.

6.
Ecology ; 103(5): e3662, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157321

RESUMO

As global change alters the composition and productivity of ecosystems, the importance of subsidies from one habitat to another may change. We experimentally manipulated black mangrove (Avicennia germinans) cover in 10 large plots and over a 5-year period (2014-2019) quantifying the effects of mangrove cover on subsidies of floating organic material (wrack) into coastal wetlands. As mangrove cover increased from 0% to 100%, wrack cover and thickness decreased by ~60%, the distance that wrack penetrated into the plots decreased by ~70%, and the percentage of the wrack trapped in the first 6 m of the plot tripled. These patterns observed during 4 "normal" years disappeared in a fifth year following Hurricane Harvey (2017), when large quantities of wrack were pushed far into the interior of all the plots, regardless of mangrove cover. Prior to the storm, the abundance of animals collected in grab samples increased with wrack biomass. Wrack composition did not affect animal abundance or composition. Experimental outplants of two types of wrack (red algae and seagrass) revealed that animal abundance and species composition varied between the fringe and interior of the plots, and between microhabitats dominated by salt marsh versus mangrove vegetation. The importance of wrack to overall carbon stocks varied as a function of autochthonous productivity: wrack inputs (per m2 ) based on survey data were greater than aboveground plant biomass in the plots (42 × 24 m) dominated by salt-marsh vegetation, but decreased to 5% of the total aboveground biomass in plots dominated by mangroves. Our results illustrate that increasing mangrove cover decreases the relative importance of marine subsidies into the intertidal at the plot level, but concentrates subsidies at the front edge of the mangrove stand. Storms, however, may temporarily override mangrove attenuation of wrack inputs. Our results highlight the importance of understanding how changes in plant species composition due to global change will impact marine subsidies and exchanges among ecosystems, and foster a broader understanding of the functional interdependence of adjacent habitats within coastal ecosystems.


Assuntos
Avicennia , Tempestades Ciclônicas , Animais , Mudança Climática , Ecossistema , Áreas Alagadas
7.
Integr Comp Biol ; 61(6): 2031-2037, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34472603

RESUMO

The organization of the living world covers a vast range of spatiotemporal scales, from molecules to the biosphere, seconds to centuries. Biologists working within specialized subdisciplines tend to focus on different ranges of scales. Therefore, developing frameworks that enable testing questions and predictions of scaling requires sufficient understanding of complex processes across biological subdisciplines and spatiotemporal scales. Frameworks that enable scaling across subdisciplines would ideally allow us to test hypotheses about the degree to which explicit integration across spatiotemporal scales is needed for predicting the outcome of biological processes. For instance, how does genomic variation within populations allow us to explain community structure? How do the dynamics of cellular metabolism translate to our understanding of whole-ecosystem metabolism? Do patterns and processes operate seamlessly across biological scales, or are there fundamental laws of biological scaling that limit our ability to make predictions from one scale to another? Similarly, can sub-organismal structures and processes be sufficiently understood in isolation of potential feedbacks from the population, community, or ecosystem levels? And can we infer the sub-organismal processes from data on the population, community, or ecosystem scale? Concerted efforts to develop more cross-disciplinary frameworks will open doors to a more fully integrated field of biology. In this paper, we discuss how we might integrate across scales, specifically by (1) identifying scales and boundaries, (2) determining analogous units and processes across scales, (3) developing frameworks to unite multiple scales, and (4) extending frameworks to new empirical systems.


Assuntos
Biodiversidade , Ecossistema , Animais , Biologia
8.
Ecology ; 102(4): e03309, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576002

RESUMO

We tested the hypothesis that mangroves provide better coastal protection than salt marsh vegetation using 10 1,008-m2 plots in which we manipulated mangrove cover from 0 to 100%. Hurricane Harvey passed over the plots in 2017. Data from erosion stakes indicated up to 26 cm of vertical and 970 cm of horizontal erosion over 70 months in the plot with 0% mangrove cover, but relatively little erosion in other plots. The hurricane did not increase erosion, and erosion decreased after the hurricane passed. Data from drone images indicated 196 m2 of erosion in the 0% mangrove plot, relatively little erosion in other plots, and little ongoing erosion after the hurricane. Transects through the plots indicated that the levee (near the front of the plot) and the bank (the front edge of the plot) retreated up to 9 m as a continuous function of decreasing mangrove cover. Soil strength was greater in areas vegetated with mangroves than in areas vegetated by marsh plants, or nonvegetated areas, and increased as a function of plot-level mangrove cover. Mangroves prevented erosion better than marsh plants did, but this service was nonlinear, with low mangrove cover providing most of the benefits.


Assuntos
Avicennia , Tempestades Ciclônicas , Mudança Climática , Texas , Áreas Alagadas
9.
Artigo em Inglês | MEDLINE | ID: mdl-33350055

RESUMO

Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient-enrichment effects within streams and rivers. We conducted a meta-analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food-web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rate versus state variable and experiment type, and were greater in flume and whole-stream experiments than in experiments using nutrient-diffusing substrata. Generally, nutrient-enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food-web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.

10.
Ecol Appl ; 30(6): e02130, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32227394

RESUMO

We used a recently published, open-access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions. We tested the hypothesis that N and P concentrations and molar ratios in streams and rivers of the United States reflect differing nutrient inputs from three dominant land-use types (agricultural, urban and forested). We also tested for differences between dissolved inorganic nutrients and suspended particulate nutrient fractions to infer sources and potential processing mechanisms across spatial and temporal scales. Observed total N and P concentrations often exceeded reported thresholds for structural changes to benthic algae (58, 57% of reported values, respectively), macroinvertebrates (39% for TN and TP), and fish (41, 37%, respectively). The majority of dissolved N and P concentrations exceeded threshold concentrations known to stimulate benthic algal growth (85, 87%, respectively), and organic matter breakdown rates (94, 58%, respectively). Concentrations of both N and P, and total and dissolved N:P ratios, were higher in streams and rivers with more agricultural and urban than forested land cover. The pattern of elevated nutrient concentrations with agricultural and urban land use was weaker for particulate fractions. The % N contained in particles decreased slightly with higher agriculture and urbanization, whereas % P in particles was unrelated to land use. Particulate N:P was relatively constant (interquartile range = 2-7) and independent of variation in DIN:DIP (interquartile range = 22-152). Dissolved, but not particulate, N:P ratios were temporally variable. Constant particulate N:P across steep DIN:DIP gradients in both space and time suggests that the stoichiometry of particulates across U.S. watersheds is most likely controlled either by external or by physicochemical instream factors, rather than by biological processing within streams. Our findings suggest that most U.S. streams and rivers have concentrations of N and P exceeding those considered protective of ecological integrity, retain dissolved N less efficiently than P, which is retained proportionally more in particles, and thus transport and export high N:P streamwater to downstream ecosystems on a continental scale.


Assuntos
Ecossistema , Rios , Agricultura , Animais , Nitrogênio/análise , Fósforo/análise , Estados Unidos
11.
Proc Natl Acad Sci U S A ; 117(9): 4831-4841, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071233

RESUMO

Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma's deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y-1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm-3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma's impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha-1 d-1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise.

12.
Ecology ; 101(5): e02988, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958144

RESUMO

Long-term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long-term directional changes (sea-level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater-to-marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low-temperature anomalies) and long-term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long-term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low-temperature events (2010 and 2011) and a hurricane (2017). Long-term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1-50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long-term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.


Assuntos
Ecossistema , Áreas Alagadas , Água Doce , Nutrientes , Rios
13.
Ecol Appl ; 30(3): e02067, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872508

RESUMO

Saltwater intrusion has particularly large impacts on karstic wetlands of the Caribbean Basin due to their porous, carbonate bedrock and low elevation. Increases in salinity and phosphorus (P) accompanying saltwater intrusion into these freshwater, P-limited wetlands are expected to alter biogeochemical cycles along with the structure and function of plant and algal communities. Calcareous periphyton is a characteristic feature of karstic wetlands and plays a central role in trophic dynamics, carbon storage, and nutrient cycling. Periphyton is extremely sensitive to water quality and quantity, but the effects of saltwater intrusion on these microbial mats remain to be understood. We conducted an ex situ mesocosm experiment to test the independent and combined effects of elevated salinity and P on the productivity, nutrient content, and diatom composition of calcareous periphyton from the Florida Everglades. We measured periphyton total carbon, nitrogen, and P concentrations and used settlement plates to measure periphyton accumulation rates and diatom species composition. The light and dark bottle method was used to measure periphyton productivity and respiration. We found that exposure to ~1 g P·m-2 ·yr-1 significantly increased periphyton mat total P concentrations, but had no effect on any other response variable. Mats exposed to elevated salinity (~22 kg salt·m-2 ·yr-1 ) had significantly lower total carbon and tended to have lower biomass and reduced productivity and respiration rates; however, mats exposed to salinity and P simultaneously had greater gross and net productivity. We found strong diatom species dissimilarity between fresh- and saltwater-treated periphyton, while P additions only elicited compositional changes in periphyton also treated with saltwater. This study contributes to our understanding of how the ecologically important calcareous periphyton mats unique to karstic, freshwater wetlands respond to increased salinity and P caused saltwater intrusion and provides a guide to diatom indicator taxa for these two important environmental drivers.


Assuntos
Perifíton , Áreas Alagadas , Região do Caribe , Florida , Água Doce
14.
Ecology ; 101(2): e02916, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31646613

RESUMO

Despite overall global declines, mangroves are expanding into and within many subtropical wetlands, leading to heterogeneous cover of marsh-mangrove coastal vegetation communities near the poleward edge of mangroves' ranges. Coastal wetlands are globally important carbon sinks, yet the effects of shifts in mangrove cover on organic-carbon (OC) storage remains uncertain. We experimentally maintained black mangrove (Avicennia germinans) or marsh vegetation in patches (n = 1,120, 3 × 3 m) along a gradient in mangrove cover (0-100%) within coastal wetland plots (n = 10, 24 × 42 m) and measured changes in OC stocks and fluxes. Within patches, above and belowground biomass (OC) was 1,630% and 61% greater for mangroves than for recolonized marshes, and soil OC was 30% greater beneath mangrove than marsh vegetation. At the plot scale, above and belowground biomass increased linearly with mangrove cover but soil OC was highly variable and unrelated to mangrove cover. Root ingrowth was not different in mangrove or marsh patches, nor did it change with mangrove cover. After 11 months, surface OC accretion was negatively related to plot-scale mangrove cover following a high-wrack deposition period. However, after 22 months, accretion was 54% higher in mangrove patches, and there was no relationship to plot-scale mangrove cover. Marsh (Batis maritima) leaf and root litter had 1,000% and 35% faster breakdown rates (k) than mangrove (A. germinans) leaf and root litter. Soil temperatures beneath mangroves were 1.4°C lower, decreasing aboveground k of fast- (cellulose) and slow-decomposing (wood) standard substrates. Wood k in shallow soil (0-15 cm) was higher in mangrove than marsh patches, but vegetation identity did not impact k in deeper soil (15-30 cm). We found that mangrove cover enhanced OC storage by increasing biomass, creating more recalcitrant organic matter and reducing k on the soil surface by altering microclimate, despite increasing wood k belowground and decreasing allochthonous OC subsidies. Our results illustrate the importance of mangroves in maintaining coastal OC storage, but also indicate that the impacts of vegetation change on OC storage may vary based on ecosystem conditions, organic-matter sources, and the relative spatiotemporal scales of mangrove vegetation change.


Assuntos
Avicennia , Áreas Alagadas , Carbono , Mudança Climática , Ecossistema
15.
Ecology ; 100(5): e02672, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30942486

RESUMO

Saltwater intrusion and salinization of coastal wetlands around the world are becoming a pressing issue due to sea level rise. Here, we assessed how a freshwater coastal wetland ecosystem responds to saltwater intrusion. In wetland mesocosms, we continuously exposed Cladium jamaicense Crantz (sawgrass) plants and their peat soil collected from a freshwater marsh to two factors associated with saltwater intrusion in karstic ecosystems: elevated loading of salinity and phosphorus (P) inputs. We took repeated measures using a 2 × 2 factorial experimental design (n = 6) with treatments composed of elevated salinity (~9 ppt), P loading (14.66 µmol P/d), or a combination of both. We measured changes in water physicochemistry, ecosystem productivity, and plant biomass change over two years to assess monthly and two-year responses to saltwater intrusion. In the short-term, plants exhibited positive growth responses with simulated saltwater intrusion (salinity + P), driven by increased P availability. Despite relatively high salinity levels for a freshwater marsh (~9 ppt), gross ecosystem productivity (GEP), net ecosystem productivity (NEP), and aboveground biomass were significantly higher in the elevated salinity + P treated monoliths compared to the freshwater controls. Salinity stress became evident after extended exposure. Although still higher than freshwater controls, GEP and NEP were significantly lower in the elevated salinity + P treatment than the +P treatment after two years. However, elevated salinity decreased live root biomass regardless of whether P was added. Our results suggest that saltwater intrusion into karstic freshwater wetlands may initially act as a subsidy by stimulating aboveground primary productivity of marsh plants. However, chronic exposure to elevated salinity results in plant stress, negatively impacting belowground peat soil structure and stability through a reduction in plant roots.


Assuntos
Solo , Áreas Alagadas , Ecossistema , Água Doce , Fósforo , Salinidade , Estresse Salino
16.
Ecol Appl ; 28(8): 2092-2108, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30376192

RESUMO

Coastal wetlands are globally important sinks of organic carbon (C). However, to what extent wetland C cycling will be affected by accelerated sea-level rise (SLR) and saltwater intrusion is unknown, especially in coastal peat marshes where water flow is highly managed. Our objective was to determine how the ecosystem C balance in coastal peat marshes is influenced by elevated salinity. For two years, we made monthly in situ manipulations of elevated salinity in freshwater (FW) and brackish water (BW) sites within Everglades National Park, Florida, USA. Salinity pulses interacted with marsh-specific variability in seasonal hydroperiods whereby effects of elevated pulsed salinity on gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) were dependent on marsh inundation level. We found little effect of elevated salinity on C cycling when both marsh sites were inundated, but when water levels receded below the soil surface, the BW marsh shifted from a C sink to a C source. During these exposed periods, we observed an approximately threefold increase in CO2 efflux from the marsh as a result of elevated salinity. Initially, elevated salinity pulses did not affect Cladium jamaicense biomass, but aboveground biomass began to be significantly decreased in the saltwater amended plots after two years of exposure at the BW site. We found a 65% (FW) and 72% (BW) reduction in live root biomass in the soil after two years of exposure to elevated salinity pulses. Regardless of salinity treatment, the FW site was C neutral while the BW site was a strong C source (-334 to -454 g C·m-2 ·yr-1 ), particularly during dry-down events. A loss of live roots coupled with annual net CO2 losses as marshes transition from FW to BW likely contributes to the collapse of peat soils observed in the coastal Everglades. As SLR increases the rate of saltwater intrusion into coastal wetlands globally, understanding how water management influences C gains and losses from these systems is crucial. Under current Everglades' water management, drought lengthens marsh dry-down periods, which, coupled with saltwater intrusion, accelerates CO2 loss from the marsh.


Assuntos
Ciclo do Carbono , Salinidade , Áreas Alagadas , Dióxido de Carbono/análise , Florida , Metano/análise , Estações do Ano
17.
J Environ Manage ; 211: 164-176, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408064

RESUMO

Since the 1880s, hydrological modification of the Greater Florida Everglades has reduced water levels and flows in Everglades National Park (ENP). The Comprehensive Everglades Restoration Program (CERP) began in 2000 to restore pre-drainage flows and preserve the natural landscape of the Everglades. However, sea-level rise (SLR) was not considered in the development of CERP. We used long-term data (2001-2016) from the Florida Coastal Everglades-Long Term Ecological Research Program to quantify and model the spatial dynamics of water levels, salinity, and nutrients in response to changes in climate, freshwater management and SLR in the Shark River Slough (SRS), ENP. Results indicate that fresh-to-marine head difference (FMHD) was the single most important factor affecting marine-to-freshwater hydrologic connectivity and transport of salinity and phosphorous upstream from the Gulf of Mexico. Sea-level has increasingly exceeded ground surface elevation at the most downstream freshwater site in SRS, thereby reducing the FMHD. We showed a higher impact of SLR in the dry season when there was practically no freshwater inflow to raise FMHD. We also demonstrated effectiveness of inflow depends more on the monthly distribution than the total annual volume. Hence, the impact per unit volume of inflow is significantly higher in the dry season in preventing high salinity and marine-derived nutrient levels. We advocate that FMHD needs to be factored into water management decisions to reduce adverse and likely irreversible effects of SLR throughout the Everglades landscape.


Assuntos
Ecossistema , Qualidade da Água , Florida , Água Doce , Golfo do México , Água , Áreas Alagadas
18.
Glob Chang Biol ; 24(1): e233-e247, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28902445

RESUMO

Rising temperatures and nutrient enrichment are co-occurring global-change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80-650 µg/L) and corresponding decreasing concentrations of P (~90-11 µg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass-specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass-specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18-0.69] eV, leaf litter E = 0.30 [95% CI = 0.072-0.54] eV, wood E = 0.41 [95% CI = 0.18-0.64] eV) close to predicted MTE values. There was evidence that temperature-driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass-specific respiration (leaf litter). Respiration rates increased under nutrient-enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Consumo de Oxigênio/fisiologia , Rios/microbiologia , Biomassa , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Temperatura
19.
Glob Chang Biol ; 24(3): 1175-1185, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29139216

RESUMO

Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.


Assuntos
Biodiversidade , Extinção Biológica , Peixes/fisiologia , Rios , Animais , Clima , Peixes/classificação , Centrais Elétricas , Sudeste dos Estados Unidos , Sudoeste dos Estados Unidos
20.
Front Microbiol ; 8: 1298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747904

RESUMO

Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...