Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(7): 758-770, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098219

RESUMO

The phytohormone salicylic acid (SA) regulates plant defense responses against pathogens. Previous studies have suggested that SA is mainly produced from trans-cinnamic acid (CA) in tobacco, but the underlying mechanisms remain largely unknown. SA synthesis is activated by wounding in tobacco plants in which the expression of WIPK and SIPK, two stress-related mitogen-activated protein kinases, is suppressed. Using this phenomenon, we previously revealed that HSR201 encoding benzyl alcohol O-benzoyltransferase is required for pathogen signal-induced SA synthesis. In this study, we further analyzed the transcriptomes of wounded WIPK-/SIPK-suppressed plants and found that the expression of NtCNL, NtCHD and NtKAT1, homologous to cinnamate-coenzyme A (CoA) ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD) and 3-ketoacyl-CoA thiolase (KAT), respectively, is associated with SA biosynthesis. CNL, CHD and KAT constitute a ß-oxidative pathway in the peroxisomes and produce benzoyl-CoA, a precursor of benzenoid compounds in petunia flowers. Subcellular localization analysis showed that NtCNL, NtCHD and NtKAT1 localize in the peroxisomes. Recombinant NtCNL catalyzed the formation of CoA esters of CA, whereas recombinant NtCHD and NtKAT1 proteins converted cinnamoyl-CoA to benzoyl-CoA, a substrate of HSR201. Virus-induced gene silencing of any one of NtCNL, NtCHD and NtKAT1 homologs compromised SA accumulation induced by a pathogen-derived elicitor in Nicotiana benthamiana leaves. Transient overexpression of NtCNL in N. benthamiana leaves resulted in SA accumulation, which was enhanced by co-expression of HSR201, although overexpression of HSR201 alone did not cause SA accumulation. These results suggested that the peroxisomal ß-oxidative pathway and HSR201 cooperatively contribute to SA biosynthesis in tobacco and N. benthamiana.


Assuntos
Proteínas de Plantas , Ácido Salicílico , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Álcoois Benzílicos/metabolismo , Estresse Oxidativo , Nicotiana/metabolismo , Doenças das Plantas/genética
2.
Plant Cell Physiol ; 63(7): 1008-1022, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671166

RESUMO

Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.


Assuntos
Arabidopsis , Calmodulina , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...