Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 112(11): 2388-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25943789

RESUMO

Neural progenitor cells derived from induced pluripotent stem cells have been considered as a potential source for cell-transplantation therapy of central nervous disorders. However, efficient methods to expand neural progenitor cells are further required for their clinical applications. In this study, a protein array was fabricated with nine extracellular matrices and used to screen substrates suitable for the expansion of neural progenitor cells derived from mouse induced pluripotent stem cells. The results showed that neural progenitor cells efficiently proliferated on substrates with immobilized laminin-1, laminin-5, or Matrigel. Based on this result, further attempts were made to develop clinically compliant substrates with immobilized polypeptides that mimic laminin-1, one of the most effective extracellular matrices as identified in the array-based screening. We used here recombinant DNA technology to prepare polypeptide containing the globular domain 3 of laminin-1 and immobilized it onto glass-based substrates. Our results showed that neural progenitor cells selectively proliferated on substrate with the immobilized polypeptide while maintaining their differentiated state.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Matriz Extracelular/metabolismo , Proteínas Imobilizadas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Expansão de Tecido/métodos , Animais , Diferenciação Celular , Camundongos
2.
J Sports Sci ; 24(1): 3-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16368609

RESUMO

The aim of the present study was to determine the combined effects of pre-cooling and water ingestion on thermoregulatory responses and exercise capacity at 32 degrees C and 80% relative humidity. Nine untrained males exercised for 60 min on a cycle ergometer at 60% maximal oxygen uptake (VO2max) (first exercise bout) under four separate conditions: No Water intake, Pre-cooling, Water ingestion, and a combination of pre-cooling and water ingestion (Combined). To evaluate the efficacy of these conditions on exercise capacity, the participants exercised to exhaustion at 80% VO2max (second exercise bout) following the first exercise bout. Rectal and mean skin temperatures before the first exercise bout in the Pre-cooling and Combined conditions were significantly lower than in the No Water and Water conditions. At the end of the first exercise bout, rectal temperature was lower in the Combined condition (38.5 +/- 0.1 degrees C) than in the other conditions (No Water: 39.1 +/- 0.1 degrees C; Pre-cooling: 38.7 +/- 0.1 degrees C; Water: 38.8 +/- 0.1 degrees C) (P < 0.05). Heat storage was higher following pre-cooling than when there was no pre-cooling (P < 0.05). The final rectal temperature in the second exercise bout was similar between the four conditions (39.1 +/- 0.1 degrees C). However, exercise time to exhaustion was longer (P < 0.05) in the Combined condition than in the other conditions. Total sweat loss was less following pre-cooling than when there was no pre-cooling (P < 0.001). Evaporative sweat loss in the Water and Combined conditions was greater (P < 0.01) than in the No Water and Pre-cooling conditions. Our results suggest that the combination of pre-cooling and water ingestion increases exercise endurance in a hot environment through enhanced heat storage and decreased thermoregulatory and cardiovascular strain.


Assuntos
Regulação da Temperatura Corporal , Temperatura Baixa , Ingestão de Líquidos , Exercício Físico/fisiologia , Adulto , Teste de Esforço/métodos , Humanos , Japão , Masculino , Resistência Física
3.
J Strength Cond Res ; 19(1): 122-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15707380

RESUMO

The aim of the present study was to investigate the effect of wearing a cooling jacket on thermoregulatory responses and endurance exercise performance in a warm environment. Nine untrained male subjects cycled for 60 minutes at 60% Vo(2)max (Ex1) and then immediately exercised to exhaustion at 80% Vo(2)max (Ex2) in 32.0 +/- 0.2 degrees C and 70-80% relative humidity. Four separate conditions were set during exercise: no water intake (NW), water intake (W), wearing a cooling jacket (C) and the combination of C and W (C+W). Rectal temperatures (T(re)) before Ex1 were not different between the 4 conditions, whereas at the end of Ex1 T(re) of C+W was significantly lower than the C and W (p < 0.05). Mean skin temperature (T(sk)) was significantly lower in C and C+W than the NW and W during Ex1. Heart rate of C and C+W were significantly lower than the NW and W, and rating of perceived exertion (RPE) in C+W was lower than in the other conditions. Exercise time to exhaustion was significantly longer in C+W than in the other conditions (NW < W, C < C+W; p < 0.05), whereas T(re) at exhaustion was not different. Our results indicate that the combination of wearing a cooling jacket and water intake enhances exercise endurance performance in a warm environment because of a widened temperature margin before the critical limiting temperature is reached and also because of decreased thermoregulatory and cardiovascular strain.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Ergometria , Calefação , Resistência Física/fisiologia , Adulto , Ingestão de Líquidos/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Umidade , Masculino , Esforço Físico/fisiologia , Temperatura Cutânea/fisiologia , Sudorese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA