Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2943, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316821

RESUMO

The global market has a high demand for premium edible grade groundnut, particularly for table use. India, in particular, exhibits significant potential for exporting confectionary grade large seeded groundnut. The environment plays a significant impact in influencing the expression of seed traits, which subsequently affects the confectionary quality of groundnut genotypes. The states of Gujarat and Rajasthan in India are prominent producers of high-quality groundnuts specifically used for confectionary purposes. The current study was conducted with 43 confectionery groundnut genotypes at Junagadh, Gujarat, and Bikaner, Rajasthan, with the goals of understanding genotype-by-environment interaction (GEI) effects and identifying stable, high yielding confectionery quality groundnut genotypes using AMMI and GGE biplot models. Pod yield per plant (PYP), number of pods per plant (NPP), hundred kernel weight (HKW), and shelling percent (SP) were estimated. The interplay between the environment and genotype has had a notable impact on the manifestation of confectionary grade characteristics in peanuts. The results from the Interaction Principal Component Analysis (IPCA) indicate that HKW contributed 76.68% and 18.95% towards the Global Environmental Index (GEI) through IPCA1 and IPCA2, respectively. Similarly, NPP contributed 87.52% and 8.65%, PYP contributed 95.87% and 2.1%, and SP contributed 77.4% and 16.22% towards GEI through IPCA1 and IPCA2, respectively. Based on the ranking of genotypes, the ideal genotypes were PBS 29079B for HKW, PBS 29230 for NPP. The genotypes PBS 29233 and PBS 29230 exhibited superior performance and stability in terms of pod yield, hundred kernel weight, number of pods per plant, and shelling percentage across various sites. These breeding lines have the potential to be developed for the purpose of producing confectionary grade groundnut with larger seeds, in order to fulfil the growing demand for export.


Assuntos
Ammi , Interação Gene-Ambiente , Melhoramento Vegetal/métodos , Índia , Genótipo
2.
Sci Rep ; 13(1): 12705, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543669

RESUMO

Water/drought stress experiments are frequently conducted under imposed stress or rainout shelters, while natural drought hot-spot investigations are rare. The "drought hot spot" in Anantapur, Andhra Pradesh, India, is appropriate for drought stress evaluation due to its hot, arid environment, limited rainfall, with over 50% rainfall variability. According to reports, 30 out of 200 groundnut cultivars in India are supposed to possess drought-tolerant characteristics. However, these cultivars are yet to be evaluated in areas that are prone to drought. This study tested these drought-tolerant genotypes in naturally drought-prone areas of Anantapur under rainfed conditions from Kharif 2017 to 2019. Pod yield and rainfall-use-efficiency (RUE) were measured for these genotypes. Genotype and genotype*environment interactions affected pod yield and RUE (GEI). The AMMI model exhibits significant season-to-season variability within the same area with environmental vectors > 90° angles. GGE biplot suggested the 2018 wet season for drought-resistant cultivar identification. Kadiri5 and GPBD5 were the most drought-tolerant cultivars for cultivation in Anantapur and adjacent regions. These types could also be used to generate drought-tolerant groundnut variants for drought-prone regions.


Assuntos
Secas , Genótipo , Estações do Ano , Sequência de Bases , Índia
3.
Physiol Mol Biol Plants ; 29(5): 725-737, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363420

RESUMO

Peanut is mostly grown in calcareous soils with high pH which are deficient in available iron (Fe2+) for plant uptake causing iron deficiency chlorosis (IDC). The most pertinent solution is to identify efficient genotypes showing tolerance to limited Fe availability in the soil. A field screening of 40 advanced breeding lines of peanut using NRCG 7472 and ICGV 86031 as IDC susceptible and tolerant checks, respectively, was envisaged for four years. PBS 22040 and 29,192 exhibited maximum tolerance while PBS 12215 and 12,185 were most susceptible. PBS 22040 accumulated maximum seed resveratrol (5.8 ± 0.08 ppm), ferulic acid (378.6 ± 0.31 ppm) and Fe (45.59 ± 0.41 ppm) content. Enhanced chlorophyll retention (8.72-9.50 µg ml-1), carotenoid accumulation (1.96-2.08 µg ml-1), and antioxidant enzyme activity (APX: 35.9-103.9%; POX: 51- 145%) reduced the MDA accumulation (5.61-9.11 µM cm-1) in tolerant lines. The overexpression of Fe transporters IRT1, ZIP5, YSL3 was recorded to the tune of 2.3-9.54; 1.45-3.7; 2.20-2.32- folds respectively in PBS 22040 and 29,192, over NRCG 7472. PBS 22040 recorded the maximum pod yield (282 ± 4.6 g/row), hundred kernel weight (55 ± 0.7 g) and number of pods per three plants (54 ± 1.7). The study thus reports new insights into the roles of resveratrol, ferulic acid and differential antioxidant enzyme activities in imparting IDC tolerance. PBS 22040, being the best performing line, can be the potent source of IDC tolerance for introgression in high yielding but susceptible genotypes under similar edaphic conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01321-9.

4.
PLoS One ; 18(4): e0282438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098075

RESUMO

India imports the most edible oils because domestic demand exceeds production. Horizontally expanding groundnut production in non-traditional areas especially in the potato-paddy rice-fallow system is possible for increasing production and it requires trait-specific cultivars. Only 1% of oilseeds are grown in non-traditional regions. Nine interspecific groundnut derivatives were tested in potato-fallow system at Deesa, Gujarat, and Mohanpura, West Bengal, and non-potato fallow areas in Junagadh during Kharif 2020 to examine their performance and adaptability. Genotype-by-environment (G×E) interaction significantly affected pod yield and its components in the combined ANOVA. "Mean vs. stability" showed that the interspecific derivative NRCGCS 446 and variety TAG 24 were the most stable and valuable genotypes. GG 7 yielded more pods in Junagadh, whereas NRCGCS 254 yielded more in Mohanpur. Low heritability estimates and strong G×E interaction for flowering days showed complicated inheritance and environmental effects. The shelling percentage was significantly correlated with days to 50% blooming, days to maturity, SCMR, HPW, and KLWR, demonstrating negative connections between maturity, component characteristics, and seed size realisation.


Assuntos
Fabaceae , Solanum tuberosum , Arachis/genética , Solanum tuberosum/genética , Genótipo , Fenótipo
5.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180042

RESUMO

The present investigation was focussed on regeneration, evaluation and screening of somaclones for yellow leaf disease (YLD) resistance using in vitro mutagenesis from a popular susceptible sugarcane variety Co86032 using four chemical mutagens at three levels of concentration (sodium azide (SA) at 0.5 mg L-1, 1.0 mg L-1, 1.5 mg L-1; sodium nitrite (SN) at 3 mg L-1, 5 mg L-1, 7 mg L-1; ethyl methane sulphonate (EMS) at 0.6 µ ML-1, 0.8 µML-1, 1.0 µ ML-1 and 2,4 D at 4 mg L-1, 5 mg L-1, 6 mg L-1). A total of 1138 tissue culture seedlings obtained were evaluated for virus resistance both in natural field conditions and in controlled greenhouse condition after aphid vector transmission and presence or absence of virus was observed by visual screening and reverse transcription-polymerase chain reaction method. Four out of 207 asymptomatic plants (16T22, 16T23, 16T29 and 16T31) were devoid of virus coat protein band and were considered to be YLD resistant. The obtained resistance somaclones showed inferior yield traits so they have to be exploited as parents in hybridization programmes with commercial varieties to impart YLD resistance ultimately yielding agronomically superior YLD-resistant varieties in sugarcane.


Assuntos
Resistência à Doença/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Saccharum/genética , Animais , Afídeos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Clonais , Resistência à Doença/efeitos dos fármacos , Metanossulfonato de Etila/farmacologia , Expressão Gênica , Insetos Vetores/virologia , Luteoviridae/genética , Luteoviridae/crescimento & desenvolvimento , Mutagênese , Mutagênicos/farmacologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Técnicas de Embriogênese Somática de Plantas , Regeneração/genética , Regeneração/imunologia , Saccharum/efeitos dos fármacos , Saccharum/imunologia , Saccharum/virologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/virologia , Azida Sódica/farmacologia , Nitrito de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...