Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 153(7): 3133-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22549226

RESUMO

Obesity results from disproportionately high energy intake relative to energy expenditure. Many therapeutic strategies have focused on the intake side of the equation, including pharmaceutical targeting of appetite and digestion. An alternative approach is to increase energy expenditure through physical activity or adaptive thermogenesis. A pharmacological way to increase muscle mass and hence exercise capacity is through inhibition of the activin receptor type IIB (ActRIIB). Muscle mass and strength is regulated, at least in part, by growth factors that signal via ActRIIB. Administration of a soluble ActRIIB protein comprised of a form of the extracellular domain of ActRIIB fused to a human Fc (ActRIIB-Fc) results in a substantial muscle mass increase in normal mice. However, ActRIIB is also present on and mediates the action of growth factors in adipose tissue, although the function of this system is poorly understood. In the current study, we report the effect of ActRIIB-Fc to suppress diet-induced obesity and linked metabolic dysfunctions in mice fed a high-fat diet. ActRIIB-Fc induced a brown fat-like thermogenic gene program in epididymal white fat, as shown by robustly increased expression of the thermogenic genes uncoupling protein 1 and peroxisomal proliferator-activated receptor-γ coactivator 1α. Finally, we identified multiple ligands capable of reducing thermogenesis that represent likely target ligands for the ActRIIB-Fc effects on the white fat depots. These data demonstrate that novel therapeutic ActRIIB-Fc improves obesity and obesity-linked metabolic disease by both increasing skeletal muscle mass and by inducing a gene program of thermogenesis in the white adipose tissues.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Obesidade/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Ativados por Proliferador de Peroxissomo , Ressonância de Plasmônio de Superfície , Termogênese , Tomografia Computadorizada por Raios X/métodos , Fatores de Transcrição
2.
Endocrinology ; 151(9): 4289-300, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573726

RESUMO

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 +/- 0.42 g (VEH) versus 23.43 +/- 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 +/- 0.26 g (VEH) versus 19.78 +/- 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 +/- 0.48 g (VEH) versus 3.53 +/- 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 +/- 0.53 g (VEH) versus 4.57 +/- 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy.


Assuntos
Receptores de Activinas Tipo II/farmacologia , Antagonistas de Androgênios/farmacologia , Composição Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Receptores de Activinas Tipo II/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/sangue , Obesidade/prevenção & controle , Orquiectomia , Distribuição Aleatória , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade
3.
Am J Physiol Cell Physiol ; 292(1): C372-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16928772

RESUMO

Skeletal muscle atrophy is associated with a marked and sustained activation of nuclear factor-kappaB (NF-kappaB) activity. Previous work showed that p50 is one of the NF-kappaB family members required for this activation and for muscle atrophy. In this work, we tested whether another NF-kappaB family member, c-Rel, is required for atrophy. Because endogenous inhibitory factor kappaBalpha (IkappaBalpha) was activated (i.e., decreased) at 3 and 7 days of muscle disuse (i.e., hindlimb unloading), we also tested if IkappaBalpha, which binds and retains Rel proteins in the cytosol, is required for atrophy and intermediates of the atrophy process. To do this, we electrotransferred a dominant negative IkappaBalpha (IkappaBalphaDeltaN) in soleus muscles, which were either unloaded or weight bearing. IkappaBalphaDeltaN expression abolished the unloading-induced increase in both NF-kappaB activation and total ubiquitinated protein. IkappaBalphaDeltaN inhibited unloading-induced fiber atrophy by 40%. The expression of certain genes known to be upregulated with atrophy were significantly inhibited by IkappaBalphaDeltaN expression during unloading, including MAFbx/atrogin-1, Nedd4, IEX, 4E-BP1, FOXO3a, and cathepsin L, suggesting these genes may be targets of NF-kappaB transcription factors. In contrast, c-Rel was not required for atrophy because the unloading-induced markers of atrophy were the same in c-rel(-/-) and wild-type mice. Thus IkappaBalpha degradation is required for the unloading-induced decrease in fiber size, the increase in protein ubiquitination, activation of NF-kappaB signaling, and the expression of specific atrophy genes, but c-Rel is not. These data represent a significant advance in our understanding of the role of NF-kappaB/IkappaB family members in skeletal muscle atrophy, and they provide new candidate NF-kappaB target genes for further study.


Assuntos
Proteínas I-kappa B/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-rel/metabolismo , Animais , Feminino , Corantes Fluorescentes , Genes Dominantes , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas I-kappa B/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-rel/deficiência , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Ubiquitina/metabolismo , Suporte de Carga
4.
FASEB J ; 21(2): 427-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17172638

RESUMO

Ubiquitination-dependent proteolysis is a fundamental process underlying skeletal muscle atrophy. Thus, the role of ubiquitin ligases is of great interest. There are no focused studies in muscle on the ubiquitin ligase Nedd4. We first confirmed increased mRNA expression in rat soleus muscles due to 1-14 days of hind limb unloading. Nedd4 protein localized to the sarcolemmal region of muscle fibers. Hind limb unloading, sciatic nerve denervation, starvation, and diabetes led to atrophy of soleus, plantaris, and gastrocnemius muscles, but only unloaded and denervated muscles showed a marked increase in Nedd4 protein expression. This increase was strongly correlated with decreased Notch1 expression, a known target of Nedd4 in other cell types. Overexpression of dominant negative Nedd4 in soleus muscles completely reversed the unloading-induced decrease of Notch1 expression, indicating that Nedd4 is required for Notch1 inactivation. Overexpression of wild-type Nedd4 in soleus muscles of weight bearing rats caused a decrease in Notch1 protein, indicating that Nedd4 is sufficient for Notch1 down-regulation. To further show that Notch1 is a Nedd4 substrate in muscle, conditional overexpression of Nedd4 in C2C12 myotubes induced ubiquitination of Notch1. This is the first finding of a Nedd4 substrate in muscle and of an ubiquitin ligase, the activity of which distinguishes disuse from cachexia atrophy.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptor Notch1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Western Blotting , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Elevação dos Membros Posteriores/fisiologia , Imuno-Histoquímica , Denervação Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Tono Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Mioblastos/citologia , Mioblastos/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor Notch1/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/metabolismo , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo
5.
Physiol Genomics ; 21(2): 253-63, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-15687482

RESUMO

Investigating the molecular mechanisms underlying sarcopenia in humans with the use of microarrays has been complicated by low sample size and the variability inherent in human gene expression profiles. We have conducted a study using Affymetrix GeneChips to identify a molecular signature of aged skeletal muscle. The molecular signature was defined as the set of expressed genes that best distinguished the vastus lateralis muscle of young (n = 10) and older (n = 12) male subjects, when a k-nearest neighbor supervised classification method was used in conjunction with a signal-to-noise ratio gene selection method and a holdout cross-validation procedure. The age-specific expression signature was comprised of 45 genes; 27 were upregulated and 18 were downregulated. This signature also correctly classified 75% of the muscle samples from young and older subjects published by an independent laboratory, based on their expression profiles. The signature revealed increased expression of several genes involved in mediating cellular responses to inflammation and apoptosis, including complement component C1QA, Galectin-1, C/EBP-beta, and FOXO3A, among others. The increased expressions of genes that regulate pre-mRNA splicing, localization, and modification of RNA comprise markers of the aging signature. Downregulated genes in the signature were the glutamine transporter SLC38A1, a TRAF-6 inhibitory zinc finger protein, and membrane-bound transcription factor protease S2P, among others. The sarcopenia signature developed here will be useful as a molecular model to judge the effectiveness of exercise and other therapeutic treatments aimed at ameliorating the effects of muscle loss associated with aging.


Assuntos
Envelhecimento/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Doenças Musculares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Análise por Conglomerados , Humanos , Masculino , Doenças Musculares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
6.
J Appl Physiol (1985) ; 98(4): 1396-406, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15608089

RESUMO

Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.


Assuntos
Técnicas de Cultura de Células/métodos , Modelos Animais de Doenças , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Inanição/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Atrofia Muscular/etiologia , Inanição/complicações
7.
J Physiol ; 551(Pt 1): 33-48, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12844509

RESUMO

Muscular inactivity leads to atrophy, weakness, and decreased fatigue resistance. In order to provide a window into the dynamic processes that underlie muscle atrophy, we performed global gene expression analysis of rat soleus muscles using Affymetrix GeneChips at 1, 4, 7 and 14 days of hindlimb unloading. Expression of 309 known genes was significantly changed by at least 2-fold (212 upregulated, 97 downregulated). K-means clustering was used to divide these genes into co-regulated clusters based on the similarity of temporal expression patterns. This allowed the development of a timeline of the atrophy process with respect to the behaviour of genes in a broad array of functional categories. Regulatory genes were often upregulated early, in either a transient or sustained manner, but they also populated clusters with later patterns of activation, suggesting different phases of molecular adaptations. Other early events were the activation of ubiquitination genes and downregulation of protein chaperones. In comparison, clusters representing slightly delayed activation patterns included genes involved in fast contraction, glycolysis, translational inhibition, oxidative stress, protein degradation, and amino acid catabolism. Downregulated genes exhibited fewer unique expression patterns and included structural and regulatory genes of the extracellular matrix and cytoskeleton, and genes that define a slow-oxidative phenotype. Other novel findings include the tight co-activation of proteasome subunit and ubiquitination genes, differential regulation of serine proteases and serine protease inhibitors, and the identification of transcriptional, signalling, growth and cell cycle genes that probably play a role in the atrophy process. The present work has uncovered temporal patterns of gene expression that highlight the molecular processes that underlie muscle atrophy and provide new avenues for study.


Assuntos
Expressão Gênica , Elevação dos Membros Posteriores , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Animais , Análise por Conglomerados , Feminino , Genes Reguladores , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Proteínas Musculares/metabolismo , Atrofia Muscular/fisiopatologia , Ratos , Ratos Wistar , Fatores de Tempo
8.
FASEB J ; 16(6): 529-38, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11919155

RESUMO

Although cytokine-induced nuclear factor kappaB (NF-kappaB) pathways are involved in muscle wasting subsequent to disease, their potential role in disuse muscle atrophy has not been characterized. Seven days of hind limb unloading led to a 10-fold activation of an NF-kappaB-dependent reporter in rat soleus muscle but not the atrophy-resistant extensor digitorum longus muscle. Nuclear levels of p50 were markedly up-regulated, c-Rel was moderately up-regulated, Rel B was down-regulated, and p52 and p65 were unchanged in unloaded solei. The nuclear IkappaB protein Bcl-3 was increased. There was increased binding to an NF-kappaB consensus oligonucleotide, and this complex bound antibodies to p50, c-Rel, and Bcl-3 but not other NF-kappaB family members. Tumor necrosis factor alpha (TNF-alpha) and TNF receptor-associated factor 2 protein were moderately down-regulated. There was no difference in p38, c-Jun NH(2)-terminal kinase or Akt activity, nor were activator protein 1 or nuclear factor of activated T cell-dependent reporters activated. Thus, whereas several NF-kappaB family members are up-regulated, the prototypical markers of cytokine-induced activation of NF-kappaB seen with disease-related wasting are not evident during disuse atrophy. Levels of an anti-apoptotic NF-kappaB target, Bcl-2, were increased fourfold whereas proapoptotic proteins Bax and Bak decreased. The evidence presented here suggests that disuse muscle atrophy is associated with activation of an alternative NF-kappaB pathway that involves the activation of p50 but not p65.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Proteína 3 do Linfoma de Células B , Núcleo Celular/metabolismo , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Genes Reporter , Elevação dos Membros Posteriores/efeitos adversos , Quinase I-kappa B , Modelos Biológicos , Atrofia Muscular/etiologia , Subunidade p50 de NF-kappa B , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Fatores de Transcrição , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...